China Dairy ›› 2021, Vol. 0 ›› Issue (5): 29-33.doi: 10.12377/1671-4393.21.05.06

• FEEDING MANAGEMENT • Previous Articles     Next Articles

Application of Big Data and IoT in Dairy Farming*

HU Tingting1, ZHANG Jinmeng2, WANG Yichong1, GUO Kaijun1,*, HANG Renlong1   

  1. 1Animal Science and Technology,Beijing University of Agriculture,Changping Beijing 102206;
    2College of Computer and Information Engineering,Beijing University of Agriculture,Changping Beijing 102206
  • Online:2021-05-25 Published:2021-06-07

Abstract: In recent years,the Internet of things technology and big data mining and analysis applications have gradually penetrated into all areas of people's lives.This paper aims to summarize the development practice of Internet of things and big data in dairy production,in order to promote dairy intelligent production more effectively by blockchain + 5G Internet of things and big data.This paper first analyzes the data collection technology and Internet of things equipment in the production block chain of dairy cows,such as individual identification,weight measurement,milk production performance,estrus monitoring,precise feeding,environmental control,etc.Then,the application of several big data analysis systems which are widely used at home and abroad are described,and the prediction function of cow brain in the process of cow production is emphatically analyzed.The large-scale and intensive dairy production reached a certain level.IOT and automation technology were gradually applied in dairy production.Big data and artificial intelligence improved the management level and economic benefits of dairy farm to a great extent.The brain system of dairy cow had a great impact on dairy production in terms of dairy performance,mastitis risk and mastitis early warning.It has important guiding significance.Internet of things,artificial intelligence,big data and other modern technologies play a role in promoting the production of dairy cows.The practical application of blockchain + 5G Internet of things and big data in dairy production can ensure the quality and safety of milk,and is expected to bring greater social and ecological benefits.

Key words: dairy production, dairy farming, artificial intelligence, big data, Internet of Things(IoT)

[1] Bongsug C. The evolution of the Internet of Things( IoT):a computational text analysis[J]. Telecommunications Policy,2019,43(10):不详.
[2] Sjaak W,Lan G,Verdouw C,et al.Big data in smart farming-a review[J]. Agricultural Systems,2017,153:69-80.
[3] Dias K M,Garcia S G,Clark C E F. Creating value of data:milking order and its role in future precision dairy feeding systems[A]. C Kamphuis and W Steeneveld, Precision Dairy Farming in Leeuwarden[C]. Netherlands:Wageningen Academic Publishers,2016.
[4] 刘雪,李兴民,曲鲁江. 由德国汉诺威国际畜牧展(EuroTier 2018)引发的思考和启示[J]. 中国畜牧杂志,2018,54(12):148-151.
[5] Pastell M,Frondelius L,Järvinen M,et al.Filtering methods to improve the accuracy of indoor positioning data for dairy cows[J].Biosystems Engineering,2018,169(1):22-31.
[6] Stankovski S,Ostojic G,Senk I,et al.Dairy cow monitoring by RFID[J]. Scientia Agricola,2012,69(1):75-80.
[7] 王栋轩. 基于ZigBee技术的养牛场称重系统设计:[硕士论文][D]. 保定:河北农业大学,2016.
[8] Grasboll K,Kirkeby C,Nielsen S S,et al.A Robust statistical model to predict the future value of the milk production of dairy cows using herd recording data[J]. Frontiers in Veterinary Science,2017,4:13.
[9] Mcdermott A,De M M,Beryyd P,et al.Cow and environmental factors associated with protein fractions and free amino acids predicted using mid-infrared spe-ctroscopy in bovine milk[J]. Journal of Dairy Science,2017,100(8):6272-6284.
[10] Kaniyamattam K,Vries A D.Agreement between milk fat、protein、and lactose observations collected from the Dairy Herd Improvement Association(DHIA)and a real-time milk analyzer[J]. Journal of Dairy Science,2014,97(5):2896-2908.
[11] 曹学浩,黄善琦,马树刚,等. 活动量监测技术的研究及其在奶牛繁殖管理中的应用[J]. 中国奶牛,2013(8):37-40.
[12] 罗学明,王小庆,沈佳栾,等. SCR发情监测系统在奶牛繁殖体系中的应用[J]. 浙江农业科学,2019,60(12):2380-2381
[13] 李新社,李新媛,俞联平,等. 以混合青贮料为基础的全混合日粮饲喂奶牛效果试验[J]. 中国草食动物科学,2014,34(3):38-40.
[14] 赵毅,程睿,赵尔迪. 饲喂机器人的发展及研制现状[J]. 农业科技与装备,2015(11):29-31.
[15] 贺勇,陈月和. 奶牛场环境污染与治理初探[J]. 中国乳业,2011(1):40-41.
[16] 朱俊峰,于书云,林雨鑫,等. 规模奶牛场粪污资源化利用浅析[J]. 中国畜禽种业,2018,14(12):106-107.
[17] Grzesiak W,Błaszczyk P,Lacroix R.Methods of predicting milk yield in dairy cows—Predictive capabilities of Wood's lactation curve and artificial neural networks(ANNs)[J]. Computers and Electronics in Agriculture,2006,54(2):69-83.
[18] Sun Z,Samarasinghe S,Jago J G.Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks[J]. Journal of Dairy Research,2010,77(2):168-175.
[19] Dongre V B,Gandhi R S,Singha A,et al.Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle[J]. Livestock Science,2012,147(1-3):192-197.
[20] Gorgulu O.Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks[J]. South African Journal of Animal Science,2012,42(3):280-287.
[21] 王海彬,王洪斌,肖建华. 奶牛精细养殖信息技术进展[J]. 中国奶牛,2009(3):15-17.
[22] 白云峰,谷子林,霍贵成. 专家系统在奶牛生产中的应用[J]. 中国奶牛,2005(6):21-23.
[23] Ele S I,Umoh E E,Adesola W A.An overview of the development principles,stages and building blocks of Expert System[J]. West African Journal of Industrial&Academic Research,2015,2(1):44-58.
[24] 刘晗,张斌,马隽,等. 奶牛肢蹄病辅助诊断专家系统的设计与实现[J]. 中国畜牧兽医,2018,45(4):1098-1105.
[25] 王连英,张雪平,徐承斌,等. 奶牛疾病专家诊断系统的应用及效果[J]. 黑龙江动物繁殖,2016,24(3):55-56.
[26] 马雪. 奶牛专家系统的研究与应用[J]. 天津农业科学,2010,16(6):128-130.
[27] Ferria M C,Chstensen A,Wangen S R.Symposium review:Dairy Brain-Informing decisions on dairy farms using data analytics[J]. Journal of Dairy Science,2020,103(4):3874-3881.
[28] Cabrare V E,Barrientos-Blanco J A,Delgado H,et al. Symposium review: Real-time continuous decision making using big data on dairy farms[J]. Journal of Dairy Science,2020,103(4):3856-3866.
[1] MEN Kuilian. Advances on Astragalus Extract Powder in Dairy Cow Rearing [J]. China Dairy, 2021, 0(9): 83-85.
[2] LIANG Junjian, CHEN Chunyu, QIU Lehong, LIN Shuyi, CHEN Xin, LIN Xiachun. Common Disinfectants and Management in Dairy Production Enterprises [J]. China Dairy, 2021, 0(5): 81-84.
[3] LIU Hao, DONG XiaoXia. Analysis of Feed Structure of Scale Ranches in Different Dairy Production Areas in China [J]. China Dairy, 2021, 0(3): 5-10.
[4] SHAN BaoLin. Research on the Development Mode of Dairy Cattle Breeding Professional Cooperatives [J]. China Dairy, 2021, 0(3): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!