China Dairy ›› 2021, Vol. 0 ›› Issue (10): 50-54.doi: 10.12377/1671-4393.21.10.11

• INVITED REVIEW • Previous Articles     Next Articles

Advances in Application of Fermented Soybean Meal in Calves Feed

MAO Hongxiang, SONG Peng, HU Jie, ZHU HongJuan*   

  1. Wilmar(Shanghai)Biotechnology Research & Development Center Co.,Ltd.
  • Online:2021-10-25 Published:2021-12-03

Abstract: Soybean meal is a high-quality plant protein,rich in amino acids,but it contains antinutritional factors such as protease inhibitors,antigen protein and lectin,which is easy to cause the disorder of digestive function of young animals,cause nutritional diarrhea,and limit the use of young animals. Microbial fermentation can improve the nutritional value of soybean meal and fully degrade anti nutritional factors. The generated small peptides and organic acids are conducive to animal digestion and absorption and intestinal health,so as to improve the daily weight gain and immune ability of calves,and reduce the diarrhea rate and weaning stress of calves. This paper summarizes the changes of nutritional value of soybean meal after fermentation,and summarizes the application of fermented soybean meal in calves,so as to provide reference for its application in calves in the future.

Key words: antinutritional factor, fermented soybean meal, small peptide, organic acids, calves

[1] 王福慧,李颖丽,杨晓东,等. 发酵豆粕对犊牛生长性能的影响[J]. 中国奶牛,2013(2):31-33.
[2] Raeth-Knight M,Chester-Jones H,Hayes S,et al.Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation[J]. Journal of Dairy Science, 2009,92(2):799-809.
[3] Moallem U,Werner D,Lehrer H,et al.Long-term effects of ad libitum whole milk prior to weaning and prepubertal protein supplementation on skeletal growth rate and first-lactation milk production[J]. Journal of Dairy Science, 2010,93(6):2639-2650.
[4] Shi C,Zhang Y,Yin Y, et al.Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium fed to pigs[J]. Journal of Animal Science,2017, 95(9):3996-4004.
[5] 彭辉才. 发酵豆粕营养价值评定的研究:[硕士论文][D]. 南宁:广西大学,2008.
[6] 游金明,李德发. 大豆抗营养因子研究进展[J]. 饲料与畜牧,2006(9):40-43.
[7] 罗敏,王涛. 豆粕中的抗营养因子和作用机制及加工处理方法[J]. 饲料工业,2010,31(23):57-61.
[8] Lalles J P, Benkredda D, Toullec R.Influence of Soya Antigen Levels in Milk Replacers on the Disruption of Intestinal Motility Patterns in Calves Sensitive to Soya[J]. Journal of Veterinary Medicine Series A, 1995, 42(1-10):467-478.
[9] 高美云,张通,刘宾,等. 豆粕抗营养因子及其生物改性的研究[J]. 中国饲料,2010(3):37-41.
[10] 杨玉娟,姚怡莎,秦玉昌,等. 豆粕与发酵豆粕中主要抗营养因子调查分析[J]. 中国农业科学,2016,49(3):573-580.
[11] 周天骄,谯仕彦,马曦,等. 大豆饲料产品中主要抗营养因子含量的检测与分析[J]. 动物营养学报,2015,27(1):221-229.
[12] 郁元年,张彬,张佩华,等. 发酵豆粕在反刍动物生产中的研究及应用进展[J]. 中国饲料,2020(15):107-111.
[13] 李莹,韩云胜,赵青余,等. 豆粕与发酵豆粕中主要营养成分,抗营养因子及体外消化率的比较分析[J]. 中国饲料,2019(23):81-86.
[14] 马得莹,谢幼梅,曲强. 湿热处理对全脂大豆抗营养因子的影响[J]. 山东农业大学学报(自然科学版),2000,31(2):166-168.
[15] 汤佩芬,李三要. 发酵对提高豆粕营养品质的作用[J]. 中国饲料,2019(24):12-15.
[16] Soberon F, Raffrenato E, Everett R W, et al.Preweaning milk replacer intake and effects on long-term productivity of dairy calves[J]. Journal of Dairy Science, 2012, 95(2):783-793.
[17] Gelsinger S L, Heinrichs A J, Jones C M.A meta-analysis of the effects of preweaned calf nutrition and growth on first-lactation performance[J]. Journal of Dairy Science, 2016, 99(8): 6206-6214.
[18] 王晓平,王霞. 发酵豆粕对低温环境下断奶犊牛生长性能和免疫反应的影响[J]. 中国饲料,2019(20):81-85.
[19] 杜红芳,窦爱丽,杨威,等. 热应激奶牛的生理变化及缓解措施[J]. 中国畜牧杂志,2007(12):59-62.
[20] 尹慧君,宋俊梅. 发酵豆粕营养价值变化的研究[J]. 粮食科技与经济,2011,36(3):54-56.
[21] Rezazadeh F,Kowsar R,Rafiee H, et al.Fermentation of soybean meal improves growth performance and immune response of abruptly weaned Holstein calves during cold weather[J]. Animal Feed Science and Technology,2019,254(9):1-12.
[22] Kim M H,Yun C H,Lee C H,et al.The effects of fermented soybean meal on immune physiological and stress-related parameters in Holstein calves after weaning[J]. Journal of Dairy Science, 2012, 95(9): 5203-5212.
[23] 张乃锋. 蛋白质与氨基酸营养对早期断奶犊牛免疫相关指标的影响:[博士论文][D]. 北京:中国农业科学院,2008.
[24] 张瑞仙,李周权,蔡勇. 小肽的吸收与转运及其营养作用[J]. 四川畜牧兽医,2012,39(4):32-34.
[25] Kim M H,Yun C H,Kim H S, et al.Effects of fermented soybean meal on growth performance, diarrheal incidence and immune-response of neonatal calves[J]. Animal Science Journal, 2010, 81(4): 475-481.
[26] 张鑫玥,何丽华,张永根,等. 粗饲料促进犊牛瘤胃发育的研究进展[J]. 动物营养学报,33(2):710-718.
[27] 刁其玉,张蓉. 我国幼龄反刍动物生长与消化生理发育特点[J]. 中国畜牧杂志,2017,53(7):4-8.
[28] 刘景喜,陈龙宾,潘振亮,等. 不同颗粒开食料对早期断奶犊牛瘤胃发育及生长性能的影响[J]. 中国奶牛,2012(17):12-15.
[29] 范雪,马健,陈晖,等. 短链脂肪酸促进犊牛瘤胃发育的作用机制[J]. 中国奶牛,2020(6):14-17.
[30] 赵会利,高艳霞,李建国,等. 丁酸钠对断奶犊牛生长,血液生化指标及胃肠道发育的影响[J]. 畜牧兽医学报,2013,44(10):1600-1608.
[31] Beiranvand H,Ghorbani G R, Khorvash M,et al.Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development[J]. Journal of Dairy Science, 2014,97(4):2270-2280.
[1] ZHANG Zunhui. Importance and Management of Drinking Water for Calves [J]. China Dairy, 2021, 0(9): 86-88.
[2] GUO Sifan, CAO Jie. Effects of Astragalus Polysaccharide Combined with Yinhuang Soluble Powder on Immunity and Diseases in Neonatal Calves [J]. China Dairy, 2021, 0(10): 61-66.
[3] ZHOU Bowen, QIU Pubin, HAO Dongsheng, SUN Shouqiang, CHANG Qiang, MA Haibao, LI Chunlai, JI Cuiying. Case Analysis in Different Feeding Models in Calves [J]. China Dairy, 2021, 0(10): 72-77.
[4] WANG Xiaoling. The Overall Solution of Intelligent Feeding for Calves [J]. China Dairy, 2021, 0(10): 101-106.
[5] Guan Jinsen. Ten Common Misunderstandings in Group Feeding of Calves [J]. China Dairy, 2021, 0(10): 107-111.
[6] SHAO Lei. Prevention and Control of Common Calf Diseases [J]. China Dairy, 2021, 0(10): 112-116.
[7] XU Xiliang, GUO Shuang. Diagnosis and Etiological Analysis of Photosensitive Allergy in Calves [J]. China Dairy, 2021, 0(10): 121-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!