China Dairy ›› 2023, Vol. 0 ›› Issue (10): 105-115.doi: 10.12377/1671-4393.23.10.19

Previous Articles     Next Articles

Research Progress of B Vitamins-producing Microorganisms

YIN Jia1,2, FENG Like2, YANG Aijun2, PENG Xiaoxia2, LI Li1,*   

  1. 1School of Food Science and Engineering,South China University of Technology,Guangzhou Guangdong 510640;
    2Guangdong Yantang Dairy Co.,Ltd.,Guangzhou Guangdong 511356
  • Online:2023-10-25 Published:2023-11-13

Abstract: Bvitamins are a group of nutrients essential for human health,and always act as coenzymes in multiple physiological metabolisms of living organisms. It has been proved that B vitamins play vital roles in energy metabolism,immune regulation,neurotransmitter synthesis, and intestinal health. B vitamins deficiency can negatively affect synthesis and metabolisms of amino acids,glucose,and fatty acids,immune functions,neurotransmitter synthesis,gut homeostasis,and even nucleic acid biosynthesis,eventually leads to many diseases and damage human health. Therefore,daily intake adequately of B vitamins is important for human health. It has been reported that multiple microorganisms maintain the capable of synthesizing B vitamins, and these B vitamins produced by gut microbiota can be absorbed by host,and regulate the intestinal health. Furthermore,probiotics such as Bifidobacterium and Lactobacillus species are proved to be able to produce B vitamins. Therefore,it is meaningful for the development of functional food to isolate probiotics that can produce B vitamins and apply into food to enhance the nutritional value,which provides a new method to enrich the B vitamins in food. Here, the physiological functions of B vitamins,the research progress of B vitamins producing bacteria and their application in foods were briefly reviewed.

Key words: B vitamins, microorganism, probiotic, food

[1] Peterson C T,Rodionov D A,Osterman A L,et al.B vitamins and their role in immune regulation and cancer[J]. Nutrients,2020,12(11):3380.
[2] Mozaffari H,Askari M,Bellissimo N,et al.Associations between dietary intake of B vitamins and cardiovascular risk factors in elderly men:A cross-sectional study[J]. International Journal of Clinical Practice,2021,75(10):e14691.
[3] Wu H H L,McDonnell T,Chinnadurai R. Physiological associations between vitamin B deficiency and diabetic kidney disease[J]. Biomedicines,2023,11(4):1153.
[4] Lindschinger M,Tatzber F,Schimetta W,et al.Bioavailability of natural versus synthetic B vitamins and their effects on metabolic processes[J]. MMW Fortschritte der Medizin,2020,162(Suppl 4):17-27.
[5] Liu J,Tan Y,Cheng H,et al.Functions of gut microbiota metabolites,current status and future perspectives[J]. Aging and Disease,2022,13(4):1106-1126.
[6] Uebanso T,Shimohata T,Mawatari K,et al.Functional roles of B-vitamins in the gut and gut microbiome[J]. Molecular Nutrition & Food Research,2020,64(18):e2000426.
[7] Rodionov D A,Arzamasov A A,Khoroshkin M S,et al.Micronutrient requirements and sharing capabilities of the human gut microbiome[J]. Frontiers in Microbiology,2019,10:1316.
[8] Maldonado Galdeano C,Cazorla S I,Lemme Dumit J M,et al. Beneficial effects of probiotic consumption on the immune system[J]. Annals of Nutrition & Metabolism,2019,74(2):115-124.
[9] Wang Y,Wu Y,Wang Y,et al.Antioxidant properties of probiotic bacteria[J]. Nutrients,2017,9(5):521.
[10] LeBlanc J G,Chain F,Martin R,et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria[J]. Microbial Cell Factories,2017,16:79.
[11] Hrubsa M,Siatka T,Nejmanova I,et al.Biological properties of vitamins of the B-complex, part 1:vitamins B(1),B(2),B(3),and B(5)[J]. Nutrients,2022,14(3):484.
[12] Yoshii K,Hosomi K,Sawane K,et al.Metabolism of dietary and microbial vitamin B family in the regulation of host immunity[J]. Frontiers in Nutrition,2019,6:48.
[13] Lonsdale D.A review of the biochemistry,metabolism and clinical benefits of thiamin(e) and its derivatives[J]. Evidence-Based Complementary and Alternative Medicine,2006,3(1):49-59.
[14] Mrowicka M,Mrowicki J,Dragan G,et al. The importance of thiamine(vitamin B1)in humans[J]. Bioscience Reports,2023,43(10):BSR20230374.
[15] Soto-Martin E C,Warnke I,Farquharson F M,et al. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities[J]. mBio,2020,11(4):e00886-20.
[16] Magnusdottir S,Ravcheev D,de Crecy-Lagard V,et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes[J]. Frontiers in Genetics,2015,6:148.
[17] Khromova N Y,Epishkina J M,Karetkin B A,et al.The combination of in vitro assessment of stress tolerance ability,autoaggregation,and vitamin B-producing ability for new probiotic strain introduction[J]. Microorganisms,2022,10(2):470.
[18] Odumosu B T,Bamidele T A,Ofem D W,et al.Screening,isolation and biotechnological potentials of foodborne Lactobacillus fermentum strains MT903311 and MT903312[J]. Heliyon,2023,9(4):e14959.
[19] Allaart J G,van Asten A J,Vernooij J C,et al. Effect of Lactobacillus fermentum on beta2 toxin production by Clostridium perfringens[J]. Applied Environmental Microbiology,2011,77(13):4406-4411.
[20] Park J,Hosomi K,Kawashima H,et al.Dietary vitamin B1 intake influences gut microbial community and the consequent production of short-chain fatty acids[J]. Nutrients,2022,14(10):2078.
[21] Fawzi N Y,Abdelghani D Y,Abdel-azim M A,et al. The ability of probiotic lactic acid bacteria to ferment egyptian broken rice milk and produce rice-based yoghurt[J]. Annals of Agricultural Science,2022,67(1):107-118.
[22] Hou J W,Yu R C,Chou C C.Changes in some components of soymilk during fermentation with bifidobacteria[J]. Food Research International,2000,33(5):393-397.
[23] Li S,Chen C,Ji Y,et al.Improvement of nutritional value,bioactivity and volatile constituents of quinoa seeds by fermentation with Lactobacillus casei[J]. Journal of Cereal Science,2018,84:83-89.
[24] Saedisomeolia A,Ashoori M.Riboflavin in human health:a review of current evidences[J]. Advances in Food and Nutrition Research,2018,83:57-81.
[25] Mosegaard S,Dipace G,Bross P,et al.Riboflavin deficiency-implications for general human health and inborn errors of metabolism[J]. International Journal of Molecular Sciences,2020,21(11):3847.
[26] Thakur K,Tomar S K,De S.Lactic acid bacteria as a cell factory for riboflavin production[J]. Microbial Biotechnology,2016,9(4):441-451.
[27] Carrizo S L,Montes de Oca C E,Laino J E,et al. Ancestral andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins[J]. Food Research International,2016,89(Part 1):488-494.
[28] Wan Z,Zheng J,Zhu Z,et al.Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health[J]. Frontiers in Nutrition,2022,9:1031502.
[29] Kim J-Y,Choi E-J,Lee J-H,et al.Probiotic potential of a novel vitamin B2-overproducing Lactobacillus plantarum Strain,HY7715,isolated from Kimchi[J]. Applied Sciences,2021,11(13):5765.
[30] Solopova A,Bottacini F,Venturi Degli Esposti E,et al. Riboflavin biosynthesis and overproduction by a derivative of the human gut commensal Bifidobacterium longum subsp. infantis ATCC 15697[J]. Frontiers in Microbiology,2020,11:573335.
[31] Llamas-Arriba M G,Hernandez-Alcantara A M,Mohedano M L,et al. Lactic acid bacteria isolated from fermented doughs in spain produce dextrans and riboflavin[J]. Foods,2021,10(9):2004.
[32] Russo P,Capozzi V,Arena M P,et al.Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread[J]. Applied Microbiology And Biotechnology,2014,98(8):3691-3700.
[33] Bhushan B,Kumkum C R,Kumari M,et al.Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum[J]. LWT-Food Science and Technology,2020,119:108871.
[34] Juarez del Valle M,Laino J E,Savoy de Giori G,et al. Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk[J]. Food Research International,2014,62:1015-1019.
[35] Juarez Del Valle M,Laino J E,de Moreno de LeBlanc A,et al. Soyamilk fermented with riboflavin-producing Lactobacillus plantarum CRL 2130 reverts and prevents ariboflavinosis in murine models[J]. British Journal of Nutrition,2016,116(7):1229-1235.
[36] Ge Y Y,Zhang J R,Corke H,et al.Screening and spontaneous mutation of pickle-derived Lactobacillus plantarum with overproduction of riboflavin,related mechanism,and food application[J]. Foods,2020,9(1):88.
[37] Spacova I,Ahannach S,Breynaert A,et al.Spontaneous riboflavin-overproducing Limosilactobacillus reuteri for biofortification of fermented foods[J]. Frontiers in Nutrition,2022,9:9.
[38] Williams P A,Harder J M,Foxworth N E,et al.Vitamin B(3)modulates mitochondrial vulnerability and prevents glaucoma in aged mice[J]. Science,2017,355(6326):756-760.
[39] Lipszyc P S,Cremaschi G A,Zorrilla-Zubilete M,et al.Niacin modulates pro-inflammatory cytokine secretion. a potential mechanism involved in its anti-atherosclerotic effect[J]. The Open Cardiovascular Medicine Journal,2013,7:90-98.
[40] Maslak E,Zloch M,Arendowski A,et al.Isolation and identification of Lactococcus lactis and Weissella cibaria strains from fermented beetroot and an investigation of their properties as potential starter cultures and probiotics[J]. Foods,2022,11(15):2257.
[41] Tangyu M,Fritz M,Ye L,et al.Co-cultures of Propionibacterium freudenreichii and Bacillus amyloliquefaciens cooperatively upgrade sunflower seed milk to high levels of vitamin B(12) and multiple co-benefits[J]. Microbial Cell Factories,2022,21(1):48.
[42] Jung M Y,Lee C,Seo M J,et al.Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses[J]. BMC Microbiology,2020,20(1):136.
[43] Palachum W,Choorit W,Chisti Y.Nutritionally enhanced probioticated whole pineapple juice[J]. Fermentation,2021,7(3):178.
[44] Oguro Y,Nishiwaki T,Shinada R,et al.Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA[J]. Journal of Bioscience and Bioengineering,2017,124(2):178-183.
[45] He W,Hu S,Du X,et al.Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with Mycobacterium tuberculosis[J]. Frontiers in Immunology,2018,9:365.
[46] Kuwaki S,Nakajima N,Tanaka H,et al.Plant-based paste fermented by lactic acid bacteria and yeast:functional analysis and possibility of application to functional foods[J]. Biochemistry Insights,2012,5:21-29.
[47] Gaucheron F.Milk and dairy products:a unique micronutrient combination[J]. Journal of the American College of Nutrition,2011,30(5 Suppl 1):400S-409S.
[48] Stach K,Stach W,Augoff K.Vitamin B6 in health and disease[J]. Nutrients,2021,13(9):3229.
[49] Toriumi K,Miyashita M,Suzuki K,et al.Vitamin B6 deficiency hyperactivates the noradrenergic system,leading to social deficits and cognitive impairment[J].Translational Psychiatry,2021,11(1):262.
[50] Qian B,Shen S,Zhang J,et al.Effects of vitamin B6 deficiency on the composition and functional potential of T cell populations[J]. Journal of Immunology Research,2017,2017:2197975.
[51] Szutowska J,Gwiazdowska D,Rybicka I,et al.Controlled fermentation of curly kale juice with the use of autochthonous starter cultures[J]. Food Research International,2021,149:110674.
[52] Li H,Yan L,Wang J,et al.Fermentation characteristics of six probiotic strains in soymilk[J]. Annals of Microbiology,2012,62(4):1473-1483.
[53] Belda E, Voland L, Tremaroli V, et al.Impairment of gut microbial biotin metabolism and host biotin status in severe obesity:effect of biotin and prebiotic supplementation on improved metabolism[J]. GUT,2022,71(12):2463-2480.
[54] Skupsky J,Sabui S,Hwang M,et al.Biotin supplementation ameliorates murine colitis by preventing NF-kappa B activation[J]. Cellular and Molecular Gastroenterology and Hepatology,2020,9(4):557-567.
[55] Hanna M,Jaqua E,Nguyen V,et al.B vitamins:functions and uses in medicine[J]. The Permanente Journal,2022,26(2):89-97.
[56] Courtemanche C,Elson-Schwab I,Mashiyama S T,et al.Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro[J]. Journal of Immunology,2004,173(5):3186-3192.
[57] Zhang X H,Bao G Y,Liu D B,et al.The association between folate and Alzheimer's Disease:a systematic review and meta-analysis[J]. Frontiers in Neuroscience,2021,15:661198.
[58] Albano C,Silvetti T,Brasca M. Screening of lactic acid bacteria producing folate and their potential use as adjunct cultures for cheese bio-enrichment[J]. FEMS Microbiology Letters,2020,367(9):fnaa059.
[59] Hossain K S,Amarasena S,Mayengbam S.B vitamins and their roles in gut health[J]. Microorganisms,2022,10(6):1168.
[60] Sugahara H,Odamaki T,Hashikura N,et al.Differences in folate production by bifidobacteria of different origins[J]. Bioscience of Microbiota Food and Health,2015,34(4):87-93.
[61] Liu M,Chen Q,Sun Y,et al.Probiotic potential of a folate-producing strain Latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota[J]. Foods,2022,11(2):234.
[62] Tamene A,Baye K,Kariluoto S,et al.Lactobacillus plantarum P2R3FA isolated from traditional cereal-based fermented food increase folate status in deficient rats[J]. Nutrients,2019,11(11):2819.
[63] Wu Z,Wu J,Cao P,et al.Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid[J]. Journal of Dairy Science,2017,100(6):4223-4229.
[64] Albano C,Silvetti T,Brasca M. Screening of lactic acid bacteria producing folate and their potential use as adjunct cultures for cheese bio-enrichment[J]. FEMS Microbiology Letters,2020,367(9):fnaa059.
[65] Tamene A,Baye K,Humblot C.Folate content of a staple food increased by fermentation of a cereal using selected folate-producing microorganisms[J]. Heliyon,2022,8(5):e09526.
[66] Tamura J,Kubota K,Murakami H,et al.Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment[J]. Clinical and Experimental Immunology,1999,116(1):28-32.
[67] Partearroyo T,Ubeda N,Montero A,et al.Vitamin B(12)and folic acid imbalance modifies NK cytotoxicity,lymphocytes B and lymphoprolipheration in aged rats[J]. Nutrients,2013,5(12):4836-4848.
[68] Guy LeBlanc J,Milani C,Savoy de Giori G,et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective[J]. Current Opinion in Biotechnology,2013,24(2):160-168.
[69] Li P GuQ,YangS etal Characterization of extracellular vitamin B12 Producing Lactobacillus plantarum strains and assessment of probiotic potentials[J]. Food chomistry,2017,234:494-501.
[70] Vogel R F,Pavlovic M,Ehrmann M A,et al. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs[J].Microbial Cell Factories,2011,10 (Supp11):S6.+
[71] Kumari M,Bhushan B,Kokkiligadda A,et al.Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin[J]. Current Research in Food Science,2021,4:646-654.
[72] Thompson H O,Onning G,Holmgren K,et al.Fermentation of cauliflower and white beans with Lactobacillus plantarum-impact on levels of riboflavin,folate,vitamin B(12),and amino acid composition[J]. Plant Foods for Human Nutrition,2020,75(2):236-242.
[73] Hossain M N,Ranadheera C S,Fang Z,et al.Production of short chain fatty acids and vitamin B-12 during the in-vitro digestion and fermentation of probiotic chocolate[J]. Food Bioscience,2022,47:101682.
[74] Xie C,Coda R,Chamlagain B,et al.Fermentation of cereal,pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification[J]. LWT-Food Science and Technology,2021,137:110431.
[1] XIAO Sha, ZHAO Ge, ZHAO Jianmei, ZHANG Xiyue, LIU Na, XU Ying, WANG Junwei. Sources,Hazards and Abatement Measures of Pathogenic Microbial Contamination in Raw Milk [J]. China Dairy, 2023, 0(5): 65-70.
[2] CAI Yunge. Research Progress of Probiotics in Treating Cow Mastitis [J]. China Dairy, 2023, 0(4): 67-71.
[3] LIU Yangle, MENG Yi, WEI Yong, LI Zhixing, PENG Xiayu. Safe Preparation of Cow Recycled Manure Solids(RMS) [J]. China Dairy, 2023, 0(2): 34-39.
[4] GAO Yan, ZENG Jun, HUO Xiangdong, SUN Jian, LI Fengming, LIU Jiancheng, CHENG Kaixun, LIN Qing. Popularization of Resource Utilization Model of Cow Dung [J]. China Dairy, 2022, 0(9): 57-61.
[5] YANG Lu. Effect of Probiotics on Milk Yield,Milk Composition and Rumenmicrobiota of Dairy Cows [J]. China Dairy, 2022, 0(8): 15-18.
[6] GAO Yan, YANG Shengchun, ZENG Jun, HUO Xiangdong, SUN Jian, LIN Qing. Effects of Probiotics on Growth Performance and Serum Indexes of Weaned Calves [J]. China Dairy, 2022, 0(8): 19-23.
[7] SUOLANG Quji, ZHAO Li, DANZENG Luosang, CIREN Luobu, CIREN Lamu, GESANG Zhuoga, BIANDAN Yixi, BASANG Zhuzha. Study on the Effect of Compound Feed Additive on the Quality of Juanshan Milk [J]. China Dairy, 2022, 0(6): 35-38.
[8] LIU Baohua, XU Qingli, BA Ningning, DU Lingling. Validation of Dry Mixing Process of Whole Nutrition Formula Food for Special Medical Purpose [J]. China Dairy, 2022, 0(6): 75-80.
[9] BA Ningning. Research and Analysis of Food for Special Medical Purpose Mixing Temperature [J]. China Dairy, 2022, 0(5): 84-88.
[10] LIU Baohua. Experimental Study on Optimum Parameters of Mixer in Dry Process of Food for Special Medical Purpose [J]. China Dairy, 2022, 0(4): 87-93.
[11] WANG Yali, HU Shiqi, LI Qiming, LIU Rongmei, CAO Jun. Key Elements and Countermeasures of Label Audit of Pre-packaged Food [J]. China Dairy, 2022, 0(3): 71-75.
[12] HUANG Zeying. Nutrition Evaluation of Fresh Milk and FOP Labeling Scheme [J]. China Dairy, 2022, 0(2): 62-69.
[13] JIN Jiajia, YAN Jiajun, QI Yan, YAO Lifeng, ZHANG Juan, HUANG Cuili, WU Simin, ZHUANG Yixie. Application Progress of MALDI-TOF MS in Dairy Microbiology [J]. China Dairy, 2022, 0(12): 89-94.
[14] YANG Chunjia, JIAN Xuan, ZHANG Juan, HUANG Cuili. Matrix Assisted Laser Desorption/ionization Time of Flight Mass Spectrometry Method(MALDI-TOF MS)for Bacillus cereus Detection in Infant Food [J]. China Dairy, 2022, 0(11): 81-84.
[15] YAN Liuqin. Problems and Countermeasures of Legal Supervision of Dairy Quality and Safety——From the Propylene Glycol Case of MaiQuer [J]. China Dairy, 2022, 0(10): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!