乳品加工

热处理与非热处理对牛乳中活性物质影响的研究进展

展开
  • 南京卫岗乳业有限公司产品研发中心,江苏南京 210095
仲秋冬(1993-),女,江苏淮安人,硕士,研究方向为糖生物学与糖生物工程;邵舒彦(1989-),女,江苏南京人,硕士,中级工程师,研究方向为食品科学;胡 静(1990-),女,江苏南京人,硕士,中级工程师,研究方向为食品科学;陈晓霞(1992-),女,江苏南京人,硕士,中级工程师,研究方向为是食品科学;沈梦琪(1993-),女,江苏镇江人,硕士,中级工程师,研究方向为食品科学;王 猛(1987-),女,河南驻马店人,学士;

网络出版日期: 2022-02-22

Research Progress on the Effects of Heat Treatment and Non-heat Treatment on Active Substances in Milk

Expand
  • Nanjing Weigang Dairy Co.,Ltd.,Nanjing Xiangsu 210095

Online published: 2022-02-22

摘要

热加工与非热加工均可有效杀灭生牛乳中的各种致病微生物,但是不同的加工方式对牛乳中活性物质影响不同,牛乳中的活性物质有乳果糖、糠氨酸、α-乳白蛋白、β-乳球蛋白,乳铁蛋白、乳过氧化物酶、免疫球蛋白等,对热处理方式较敏感,均可作为热敏性指标,在一定程度上体现乳品加工强度和品质,但牛奶热敏性指标的评价体系需要进一步的补充与完善。本文对牛乳的热加工条件、牛乳在受热情况下的理化变化,牛乳的非热加工处理后的理化变化以及相应的热敏感成分的变化进行综述,供同业参考。

本文引用格式

仲秋冬, 邵舒彦, 胡静, 陈晓霞, 沈梦琪, 王猛, 龄南 . 热处理与非热处理对牛乳中活性物质影响的研究进展[J]. 中国乳业, 2022 , 0(1) : 94 -98 . DOI: 10.12377/1671-4393.22.01.18

Abstract

Both heat treatment processing and non-heat treatment processing can effectively kill various pathogenic microorganisms in raw milk, but different processing methods have different effects on the active substances in milk. Protein,β-lactoglobulin, lactoferrin, lactoperoxidase, immunoglobulin etc. are sensitive to heat treatment methods and can be used as heat-sensitive indicators, reflecting the processing strength and quality of dairy products to a certain extent. However the evaluation system of milk heat-sensitive indicators need to be further supplemented and improved. In this paper, the thermal processing conditions of milk, the physical and chemical changes of milk under heat treatment, the physical and chemical changes of milk after non-thermal processing,and the changes of the corresponding heat-sensitive components were reviewed for the reference of the industry.

参考文献

[1] 黄萌萌,王加启,卜登攀,等. 牛奶中乳果糖的研究进展[J]. 中国乳品工业,2007,35(6):54-57.
[2] 杨晋辉,李松励,郑楠,等. 热处理对牛乳成分的影响以及热敏感指标的变化研究进展[J]. 食品科学,2017,38(7):302-308.
[3] Laleye L C,Jobe B,Wasesa A A H. Comparative Study on Heat Stability and Functionality of Camel and Bovine Milk Whey Proteins[J].Journal of Dairy Science,2008,91(12):4534.
[4] Guo Y,Paula J.Protective effect of β-lactoglobulin against heat induced loss of antioxidant activity of resveratrol[J]. Food Chemistry,2018,266:101-109.
[5] Yan C R.Determination of α-lactalbumin in infant formula milk powder by gel chromatography[J]. Journal of Food Safety & Quality,2018.
[6] E Russo F.Protective activity of α-lactoalbumin (ALAC),a whey protein rich in tryptophan,in rodent models of epileptogenesi[J]. Neuroscience,2012.doi.
[7] Campanella L,Martini E,Pintore M,et al.Determination of Lactoferrin and Immunoglobulin G in Animal Milks by New Immunosensors[J]. Sensors,2009,9(3):2202-2221.
[8] Soboleva S,Sedykh S,Alinovskaya L.Cow Milk Lactoferrin Possesses Several Catalytic Activities[J]. Biomolecules,2019,208(9).doi.
[9] Seifu E,Buys E M,Donkin E F.Significance of the lactoperoxidase system in the dairy industry and its potential applications:a review[J]. Trends in Food Science & Technology,2005,16(4):154.
[10] 赵玉娟. 免疫牛初乳免疫球蛋白加工处理稳定性的研究:[硕士论文][D]. 吉林农业大学,2006.
[11] Zeynep K,Zuhal A.Lactoperoxidase,an antimicrobial enzyme,is inhibited by some indazoles[J]. Drug & Chemical Toxicology,2018:1-5.
[12] Nakano M,Suzuki M,Wakabayashi H, et al.Synergistic anti-candida activities of lactoferrin and the lactoperoxidase system[J].Drug Discoveries & Therapeutics. 2019;13(1):28-33.doi: 10.5582/ddt.2019.01010.
[13] Musayeva K,Sedereviius A,Elvyte R,et al.Lactoferrin and immune globulin G content in cow milk in relation to somatic cell count and number of lactations[J]. Veterinarija Ir Zootechnika,2018,76(98):41-44.
[14] Dalal F R,Winsten S.Double light-chain disease:a case report[J].Clinical Chemistry,2019(1):1.
[15] Musayeva K,Sedereviius A,Elvyt R,et al.Concentration of lactofer-rin and immunoglobulin G in cows’milk in relation to health status of the udder, lactation and season[J]. Polish Journal of Veterinary Sciences,2016,19(4).doi.
[16] Volker H,Roman B.Food preservation by high pressure[J]. Journal of consumer protection and food Safety,2010,5(1):73-81.
[17] Rendueles E, Omer M K, Alvseike O, et al.Microbiological food safety assessment of high hydrostatic pressure processing:a review[J]. Lwt-Food Science and Technology,2011,44(5):1251-1260.
[18] Huang H W,Lung H M,Yang B B,et al.Responses of microorganisms to high hydrostatic pressure processing[J]. Food Control,2014,40:250-259.
[19] 杨晋辉,李松励,郑楠,等. 热处理对牛乳成分的影响以及热敏感指标的变化研究进展[J]. 食品科学,2017,38(7):302-308.
[20] Shimo P S, Wu X Y,Xiong L, et. al. The influence of heat treatment in liquid whey at various pH on immunoglobuling and lactoferrin from yak and cows’colostrum/milk[J]. Journal of Food Processing & Technology,2015,6(10):https://doi.org/10.4172/2157-7110.1000503
[21] 屈雪寅,郑楠,李松励,等. 热处理对液态乳中乳清蛋白的影响研究进展[J]. 食品科学,2017,38(9):307-313.
[22] Zeina W,María-Dolores P,Lourdes S,et al.Effect of heat treatment on denaturation of bovine alpha-lactalbumin:determination of kinetic and thermodynamic parameters[J]. Journal of Agricultural & Food Chemistry,2005,53(25):9730-9736.
[23] Gabor G,Peter K,Mark H.Comparison of traditional and microwave pasteurization of cow milk[J]. Magyar Allatorvosok Lapja,2013,135(9):557-564.
[24] 王象欣,张秋梅,魏雪冬,等.不同类型热处理方式对牛乳品质的影响[J].中国乳品工业,2019,47(04):20-23.
[25] Moatsou G,Park Y W, Haenlein G F W. Sanitary procedures,heat treatments and packaging[M]. Milk and Dairy Products in Human Nutrition: Production,Composition and Health. John Wiley & Sons,2013.
[26] Teknotext A B. Dairy processing handbook[M]. Lund,Sweden:Tetra Pak Processing Systems AB,1995:Chapter 8.
[27] Elliott A J, Datta N, Amenu B,et al.Heat-induced and other chemical changes in commercial UHT milks[J]. Journal of Dairy Research,2005,72(4):442-446.
[28] Wang C Y,Huang H W,Hsu CP,et al.Recent advances in food processing using high hydrostatic pressure technology[J]. Critical Reviews in Food Science and Nutrition,2016,56(4):527-540.
[29] Abera G, Yildiz F(Reviewing editor).Review on high pressure processing of foods[J]. Cogent Food and Agriculture,2019,5(1):1-23.
[30] Balasubramaniam V M,Martínez M S I, Gupta R. Principles and application of high pressure-based technologies in the food industry. Annual Review of Food Science and Technology,2015:6:435-62.DOI:10.1146/annurev-food-022814-015539.
[31] 赵光远,陈美丽,许艳华,等.超高压微射流对石榴汁微生物及抗氧化活性的研究[J]. 食品科技,2017,42(2):89–93.
[32] 刘梦培,郭晓君,赵光远,等.纵伟超高压微射流均质技术对铁棍山药汁营养成分的影响[J].食品工业科技,2017,17(38):24-27.
[33] 陈美丽,许艳华,纵伟,等. 超高压微射流对石榴汁品质的影响[J]. 食品研究与开发,2017,38(3):81-85.
[34] 高辰哲. 红树莓果酒酿造及超高压技术应用研究:[硕士论文][D].东北农业大学,2017.
[35] 邓红,马婧,李涵,等. 超高压杀菌处理冷破碎猕猴桃果浆贮藏期的品质变化[J]. 食品与发酵工业,2019,45(8):123-129.
[36] Floury J, Desrumaux A, Lardières J.Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oilin-water emulsion[J]. Innovative Food Science & Emerging Technologies,2000(1):127-134.
[37] Pereda J,Ferragut V,Quevedo J M,et al.Heat damage evaluation in ultra-high pressure homogenized milk[J]. Food Hydrocolloids,2009,23(7):1974-1979.
[38] Pinho C R G,Franchi M A,Tribst A A L,et al. Effect of ultra high pressure homogenization on alkaline phosphatase and lactoperoxidase activity in raw skim milk[J]. Procedia Food Science,2011,1(1):874-878.
文章导航

/