China Dairy ›› 2021, Vol. 0 ›› Issue (8): 68-75.doi: 10.12377/1671-4393.21.08.13
Previous Articles Next Articles
SHEN Yiyuan1, TONG Jinjin1, XIONG Benhai2, JIANG Lingshu1,*
[1] Lin L,Xie F,Sun D,et al.Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model[J].Microbiome,2019,7(1):83. [2] Dias J,Marcondes M I,et al.Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development[J].Applied and Environmental Microbiology,2018,84(9):e2617-e2675. [3] Jami E,Israel A,Kotser A,et al.Exploring the bovine rumen bacterial community from birth to adulthood[J].ISME Journal,2013,7(6):1069-1079. [4] Paz H A,Hales K E,Wells J E,et al.Rumen bacterial community structure impacts feed efficiency in beef cattle[J].Journal of Animal Science,2018,96(3):1045-1058. [5] Koch F,Thom U,Albrecht E,et al.Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J].Proceedings of the National Academy of Sciences,2019,116(21):10333-10338. [6] 马燕芬,陈琦,杜瑞平,等.热应激对奶山羊瘤胃上皮细胞屏障通透性的影响[J].中国农业科学,2013,46(21):4478-4485. [7] Kim D,Kim M,Kim S,et al.Differential dynamics of the ruminal microbiome of jersey cows in a heat stress environment[J].Animals,2020,10(7):1127. [8] Zhao S,Min L,Zheng N,et al.Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows[J].Animals (Basel),2019,9(11):925. [9] Pederzolli R A,Campbell J,et al.Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers[J].Journal of Animal Science,2018,96(1):108-125. [10] 李晗,王宇,高景,等.热应激对瘤胃微生物的影响及其与奶牛生产性能的关系[J].动物营养学报,2019,31(10):4458-4463. [11] 李淑红. 高温引发的奶牛热应激及其饲养管理调控措施[J].现代畜牧科技,2018(4):24. [12] Vaidya J D,Gastele S V,Smidt H, et al.Characterization of dairy cow rumen bacterial and archaeal communities associated with grass silage and maize silage based diets[J].PLoS One,2020,15(3):e229887. [13] 徐晓锋,胡丹丹,郭婷婷,等.不同精粗比饲粮条件下奶牛瘤胃细菌菌群结构变化的研究[J].动物营养学报,2019,31(12):5541-5550. [14] 汪悦,张议夫,蒋林树.茶皂素对奶牛瘤胃甲烷菌及甲烷排放的影响[J].中国农学通报,2018,34(29):104-111. [15] Kasparovska J,Pecinkova M,Dadakova K,et al.Effects of Isoflavone-Enriched Feed on the Rumen Microbiota in Dairy Cows[J].PLoS One,2016,11(4):e154642. [16] Hu R,Zou H,Wang Z,et al.Nutritional interventions improved rumen functions and promoted compensatory growth of growth-retarded yaks as revealed by integrated transcripts and microbiome analyses[J].Frontiers in Microbiology,2019,10:318. [17] Fomenky B E,Do D N,Talbot G,et al.Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves[J].Scientific Reports,2018,8(1):14147. [18] Li S,Wang Q,LIN X,et al.The use of“Omics”in lactation research in dairy cows[J].International Journal of Molecular Sciences,2017,18(5):983. [19] 薛夫光,施辉毕,孙福昱,等.宏基因组分析方法探究高精料日粮对奶牛瘤胃产甲烷菌的影响[J].农业大数据学报,2019,1(1):45-55. [20] Tong J J,Zhang H,Yang D,et al.Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows[J].PLoS One,2018,13(11):e198225. [21] Zhong Y,Xue M,Liu J.Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts[J].Frontiers in Microbiology,2018,9:3217. [22] Wirth R,Kadar G,Kakuk B,et al.The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing[J].Frontiers in Microbiology,2018,9:2285. [23] 盖叶顶,王后福,王淑玲,等.瘤胃微生物宏组学分析及研究进展[J].中国畜牧杂志,2020,56(3):7-12. [24] Delgado B,Bach A,Guasch I,et al.Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle[J].Scientific Reports,2019,9(1):11. [25] 吴建民,王雍,周协琛,等.基于宏基因组学解析瘤胃微生物调节荷斯坦奶牛乳蛋白含量的研究[J].动物营养学报,2020,32(8):3843-3855. [26] Shinkai T,Mitsumori M,Sofyan A,et al.Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen[J].Animal Science Journal,2016,87(11):1363-1370. [27] Duque E,Daddaoua A,Cordero B F, et al.Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production[J].Microbial Biotechnology,2018,11(4):781-787. [28] 韦人月,郑家三.代谢组学技术在奶牛生产性疾病研究中的应用[J].畜牧与饲料科学,2020,41(1):18-22. [29] Zhang H,Tong J J,Zhang Y,et al.Metabolomics reveals potential biomarkers in the rumen fluid of dairy cows with different levels of milk production[J].Asian-Australasian Journal of Animal Sciences,2020,33(1):79-90. [30] Mu Y,Lin X,Wang Z,et al.High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle[J].MicrobiologyOpen,2018,8(4):e673. [31] Shabat S K,Sasson G,et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J].ISME Journal,2016,10(12):2958-2972. [32] Malmuthuge N,Liang G,Guan L L.Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J].Genome Biology,2019,20(1):172. [33] Xue M,Sun H,Wu X, et al.Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance[J].Microbiome,2020,8(1):64. [34] Sun H Z,Zhou M,Wang O,et al.Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows[J].Bioinformatics,2020,36(8):2530-2537. [35] Mu C,Yang Y,Zhu W.Gut microbiota:the brain peacekeeper[J].Frontiers in Microbiology,2016,7:345. [36] Anderson C L,Schneider C J,Erickson G E,et al.Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs[J].Journal of Applied Microbiology,2016,120(3):588-599. [37] Plaizier J C,Li S,Tun H M,et al.Nutritional Models of Experimentally-Induced Subacute Ruminal Acidosis (SARA) Differ in Their Impact on Rumen and Hindgut Bacterial Communities in Dairy Cows[J].Frontiers in Microbiology,2017,7:2128. [38] Zhao C,Liu G,Li X,et al.Inflammatory mechanism of rumenitis in dairy cows with subacute ruminal acidosis[J].BMC Veterinary Research,2018,14(1):135. [39] LiW,Gelsinger S,Edwards A,et al.Transcriptome analysis of rumen epithelium and meta-transcriptome analysis of rumen epimural microbial community in young calves with feed induced acidosis[J].Scientific Reports,2019,9(1):4744. [40] Johnzon C,Dahlberg J,Gustafson A,et al.The Effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach[J].Frontiers in Immunology,2018,9:1487. [41] Humer E,Aditya S,Zebeli Q.Innate immunity and metabolomic responses in dairy cows challenged intramammarily with lipopolysaccharide after subacute ruminal acidosis[J].Animal,2018,12(12):2551-2560. [42] Aditya S,Humer E,Pourazad P,et al.Metabolic and stress responses in dairy cows fed a concentrate-rich diet and submitted to intramammary lipopolysaccharide challenge[J].Animal,2018,12(4):741-749. [43] 胡晓宇. 奶牛瘤胃菌群紊乱与乳腺炎的关联性及机制研究:[博士论文][D].长春:吉林大学,2020. [44] Zebeli Q,Metzler-zebeli B U.Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle[J].Research in Veterinary Science,2012,93(3):1099-1108. [45] 海丽丽,李婷婷,刘博,等.TLR4介导大肠杆菌感染的奶牛子宫内膜组织中PGE2分泌研究[J].黑龙江畜牧兽医,2019(21):18-21. [46] Bilal M S,Abaker J A,Aabdin Z U l,et al. Lipopolysaccharide derived from the digestive tract triggers an inflammatory response in the uterus of mid-lactating dairy cows during SARA[J].BMC Veterinary Research,2016,12(1):284. [47] Miller B A,Brewer A,Nanni P,et al.Characterization of circulating plasma proteins in dairy cows with cytological endometritis[J].Journal of Proteomics,2019,205:103421. [48] Tadepalli S,Narayanan S K,Stewart G C,et al.Fusobacterium necrophorum:a ruminal bacterium that invades liver to cause abscesses in cattle[J].Anaerobe,2009,15(1-2):36-43. [49] Narayanan S K,Nagaraja T G,Chengappa M M, etal. Cloning, sequencing, and expression of the leukotoxin gene from Fusobacterium necrophorum[J].Infect Immun,2001,69(9):5447-55. [50] 郑家三. 奶牛腐蹄病的蛋白质组学和代谢组学研究:[博士论文][D].哈尔滨:东北农业大学,2017. |
|