China Dairy ›› 2021, Vol. 0 ›› Issue (7): 91-97.doi: 10.12377/1671-4393.21.07.18

Previous Articles     Next Articles

Uncertainty Evaluation for the Determination of Folic Acid in Infant Formula by Microbiological Methods

WU SiMin, YAN JiaJun*, HUANG ZhongBiao   

  1. Guangdong Testing Institute of Product Quality Supervision, Foshan Guangdong 528300
  • Online:2021-07-25 Published:2021-08-10

Abstract: To evaluate the uncertainty for determination of folic acid in infant formula by microbiological method. According to GB 5009.211—2014 National food safety standard-Determination of folic acid in food and relevant evaluation criteria of uncertainty and relevant statistical methods,the uncertainty components affecting folic acid content results in infant formula food were analysed and evaluated.The content of folic acid in infant formula was (148.49±7.37)μg/100g,k=2.It was found that the preparation process of standard solution and the preparation process of sample solution were the main factors affecting the test results.The deviation of instrument measurement, repeatability and test methods were secondary factors.The microbiological determination method of folic acid in infant formula has low uncertainty,It can be used for the determination of folic acid in infant formula.

Key words: microbial method, folic acid, infant formula, uncertainty

[1] Geisel J.Folic acid and neural tube defects in pregnancy:A review[J].Journal of Perinatal & Neonatal Nursing,2003,17(4):268-279.
[2] Soest A V,Rest O V D,Witkamp R F,et al.Positive effects of folic acid supplementation on cognitive aging are dependent on ω-3 fatty acid status:a post hoc analysis of the FACIT trial[J]. American Journal of Clinical Nutrition,2021,113(11):801-809.
[3] Martinez H,Pachon H,Kancherla V,et al.Food fortification with folic acid prevents spina bifida and anencephaly:a need for paradigm shift in evidence evaluation for policy-making[J]. American Journal of Epidemiology,2021.00(00):1-5.
[4] 李晓瑜. 微量营养素风险评估在食品强化标准制修订中的应用研究:[硕士论文][D]. 北京:中国疾病预防控制中心,2010.
[5] 南京柱,李秀娟,张旭,等. 3岁儿童血清铁、不饱和铁结合力、总铁结合力、叶酸、维生素B,(12)参考区间的建立[J]. 标记免疫分析与临床,2021,28(3):379-384.
[6] 姚永顺,刘洪冕. 高效液相色谱法测定叶酸片中叶酸含量[J]. 饮食科学,2019(10):188.
[7] 蔡建. 超高效液相色谱-串联质谱法测定运动饮料中的叶酸[J]. 食品与发酵工业,20l7,43(11):220-224.
[8] 姚瑛,付晖,李群,等. 高效液相色谱法测定保健食品多维康胶囊中叶酸的含量[J]. 食品安全质量检测学报,2021,12(5):1850-1854.
[9] 陈琼,黄树楷,黄盼,等. 固相萃取-HPLC柱后氧化衍生荧光法测定运动营养食品中叶酸的含量[J]. 食品工业科技,2020,41(19):286-290,296.
[10] 司凯萌,张晓静,彭友元. 基于纳米金-多壁碳纳米管增敏的分子印迹电化学传感器测定叶酸[J]. 化学研究与应用,2020,32(12):2158-2164.
[11] 贾永娟,刘春冉,郑春梅,等. 叶酸及其代谢物不同检测方法结果比较分析[J]. 标记免疫分析与临床,2019,26(9):1583-1586.
[12] 李勇,张妍,罗微,等. 标本溶血对化学发光免疫分析法测定胰岛素、叶酸及铁蛋白结果的影响[J]. 检验医学与临床,2019,16(11):1480-1482.
[13] Vaishanav S K,Korram J,Nagwanshi R,et al.Interaction of folic acid with Mn2+ doped CdTe/ZnS quantum dots:in situ detection of folic acid[J].Journal of Fluorescence,2021,31(4):1-10.
[14] 李江,严家俊,綦艳,等. 酶联免疫法快速检测奶粉中的叶酸[J]. 中国乳品工业,2017,45(10):37-38,50.
[15] 李贞. ELISA方法检测牛奶中叶酸含量[J]. 食品研究与开发,2016,37(19):137-141.
[16] 周敏,宁礼信,高志城,等. 微生物法测定维生素矿物片中的叶酸含量[J]. 食品科技,2020,45(8):253-258.
[17] 杨小平,曾慧君,虞伟明,等. EP管法测定婴幼儿配方乳粉中叶酸质量分数[J]. 中国乳品工业,2020,48(7):51-54.
[18] 李岩,王竹,毛宏梅,等. 微生物改良法和电化学发光法检测血清叶酸的比较研究[J]. 卫生研究,2021,50(1):111-115.
[19] 严家俊,吴思敏,苏妙仪,等. 微生物法测定婴幼儿乳粉中V(B12)的优化研究[J]. 食品科技,2020,45(5):304-308.
[1] CHEN Chen. Evaluation of Uncertainty of Lutein Content in Infant Formula Milk Powder [J]. China Dairy, 2021, 0(8): 107-112.
[2] WU Shumin, LIN Mudi. Evaluation of Uncertainty of Plate Counting Method for Coliform Bacteria in Milk [J]. China Dairy, 2021, 0(7): 98-101.
[3] WANG Weihong, YANG Xinqiu. Precise Application of Fructo-oligosaccharides and Galacto-oligosaccharides in Infant Formula [J]. China Dairy, 2021, 0(7): 102-108.
[4] HU Dongmei, WANG Fang, CHEN Chen. Comparison of Vitamin K1 Content in Three Infant Formula Milk Powders under Different Storage Conditions [J]. China Dairy, 2021, 0(6): 100-102.
[5] LI Xin. Current Situation and Research on Production conditions and Packages. [J]. China Dairy, 2021, 0(5): 85-90.
[6] FAN Yao, PENG Xiyang, DAI Zhiyong, WANG Jiaqi, DONG Ling, PAN Lina. Principles Guideline of Label Design for Australian-New Zealand Infant Formula Products [J]. China Dairy, 2021, 0(3): 57-64.
[7] ZHANG Tian-bo, YANG Kai, LI Zhao-xu. Study on the Loss Rates of Vitamins in Infant Formula Milk Powder During the Shelf Life [J]. China Dairy, 2018, 0(2): 64-67.
[8] DAI Yi, MO Hong-wei, ZHANG Yan-chun, PAN Li-na, DAI Zhi-yong, LIU Cheng-guo, ZHOU Hui. Composition of Oil and Fat in Infant Formula Milk Powder and Its Research Progress of Microencapsulation [J]. China Dairy, 2018, 0(1): 53-56.
[9] LIU Cui-ping, YAN Yong-heng, FAN Wei-yu, BAO Li, QIU Bin, DU Fang-ling, CHEN Liang, XU Tong-cheng. The Influence Study of Different Time Factors,Regional Factors and Economic Conditions on the Composition of Fatty Acids in Breast Milk in China [J]. China Dairy, 2018, 0(1): 66-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!