中国乳业 ›› 2024, Vol. 0 ›› Issue (11): 50-56.doi: 10.12377/1671-4393.24.11.08

• 智慧养殖专题 • 上一篇    下一篇

从农场到餐桌的科学:以实现未来弹性生产的乳业数据挖掘

王蕾, 郭凯军*   

  1. 北京农学院,北京 100096
  • 出版日期:2024-11-25 发布日期:2024-12-10
  • 通讯作者: *郭凯军(1973-),男,河南西平人,博士,教授,硕士生导师,研究方向为智慧牧业科学与工程。
  • 作者简介:王 蕾(2001-),男,北京人,在读硕士,研究方向为智慧牧业科学与工程。
  • 基金资助:
    北京市家畜创新团队项目(BAIC05-2024)

Farm-to-table Science: Dairy Data Mining for Future Resilience

WANG Lei, GUO Kaijun*   

  1. Beijing University of Agriculture, Beijing 100096
  • Online:2024-11-25 Published:2024-12-10

摘要: 自动挤奶系统(AMS)和精确畜牧业(PLF)系统提供的大量多维度数据,有助于探索现实世界的抗逆性状和可持续农业战略。 AMS自20世纪90年代在荷兰问世以来,在北欧地区的应用日益广泛,由机器人收集的牛奶总量约占总产量的1/3。北欧地区主要品牌的牧场管理系统(FMS)仅能报告当前数据,未能涵盖对研究牛群遗传、行为和环境至关重要的历史信息。本研究介绍了瑞典农业科学大学(SLU)的奶牛数据基础设施——SLU Gigacow系统,该系统从某些瑞典农场收集数据。每个农场的FMS每晚向SLU Gigacow发送报告,该系统统一记录并将数据收集到中央数据库。收集的记录包括数千头奶牛的挤奶统计数据、健康事件、交易数据和SNP基因型,研究人员可通过结构化查询语言(SQL)或R语言查询并访问这些记录。SLU Gigacow还整合了来自瑞典全国奶牛登记处的数据,包括参与农场奶牛的系谱信息和牛群转移情况。SLU Gigacow的纵向观察(首批数据收集于2020年)将基因型、表型和动物福利联系起来,旨在加快乳业科学试点研究,并提供一个活跃于商业环境的奶牛大数据集。用Python 3(比弗顿,美国)数据收集编写软件可从多个版本的DeLaval DelPro(帝波罗公司推出的一款牧场管理软件系统)收集数据模块,并扩展到任何具有图形用户界面的FMS,且在大多数客户的操作系统运行。使用SSIS,即 SQL Server 集成服务协调解决语言、FMS版本的差异后,数据被存储在SLU Gigacow维护的数据库中,使用SSIS。通过与瑞典乌普萨拉的瓦克萨瑞典公司(Växa Sverige AB)达成协议,参与农民可使用由荷兰阿姆斯特丹生产的包含45K EUROG MD微珠芯片,对大量动物进行基因分型。目前,该数据库包含17 000 余头牛、300 余万次挤奶、2 969 个SNP基因型的信息。交叉参考数据可用于各种目的,包括应激反应和抗逆性状研究。虽然SLU Gigacow旨在从瑞典农场收集数据并为瑞典研究人员提供支持,它证明来自奶牛场多种来源和系统的数据可被自动收集,并整理成方便研究人员使用的格式。笔者认为,这显示出从农场到餐桌统计数据的巨大效用,并提升了FMS的交互操作性。SLU Gigacow是在缺乏奶业数据通信的标准化接口的情况下建立的,因此畜牧业正在建立此类数据标准,但标准的制定和实施需要时间且依赖于各方的积极参与。SLU Gigacow的研究驱动方法能更快速、更综合的测量奶牛场环境的各方面数据,为PLF系统开辟了新的细分领域,并为适应不断变化的气候开辟了更广阔的探索空间。

关键词: 乳品科学, 大数据, 抗逆性状

Abstract: Adoption of automated milking systems (AMS) and other precision livestock farming (PLF) systems offers access to large,multidimensional data that allow exploration of resilience traits and sustainable farming strategies in real-world scenarios. Since their inception in the Netherlands in the 1990s,AMS have seen increased adoption Adoption of automated milking systems (AMS) and other precision livestock farming (PLF) systems offers access to large,multidimensional data that allow exploration of resilience traits and sustainable farming strategies in real-world scenarios.Since their inception in the Netherlands in the 1990s,AMS have seen increased adoption in the Nordic countries,with around a third of the total milk production collected by robots. The major brands of farm management systems(FMS)in the Nordic region are only configured to report data as a current overview,discarding older information that is vital to studies of the herd’s genetics,behaviour,and environment.In this work,we present the infrastructure for dairy cattle data at the Swedish University of Agricultural Sciences,Gigacow(SLU Gigacow)that collects data from a set of Swedish dairy farms. Each farm’s FMS sends nightly reports to SLU Gigacow,where records are harmonised and collected in a central database. Collected records include milking statistics,health events,traffic data,and SNP genotypes for thousands of cows,and are made accessible to researchers through SQL or R queries. SLU Gigacow also integrates data from the Swedish national cow registry,including pedigrees and herd transfers for cows resident at participating farms.SLU Gigacow’s longitudinal observations (first data collected in 2020) link genotype to phenotype and animal welfare with the goal of accelerating pilot studies in dairy science,as well as providing a big dataset from cows in active,commercial settings. The data collection software written in Python 3 (Beaverton,USA) has modules that enable collection from several versions of DeLaval DelPro (Tumba,Sweden), and can be extended to any FMS with a graphical user interface running on most consumer operating systems. After harmonisation to resolve differences in language and FMS versions,data are stored in a database maintained at SLU with SQL Server Integration Services (SSIS) (Microsoft, Redmond,USA). By agreement with Växa Sverige AB (Uppsala, Sweden),participating farmers also get a large number of animals genotyped using the 45k EuroG MD beadchip (Amsterdam, The Netherlands). Currently,the database includes information on over 17 000 cattle,over 3 000 000 milkings,and 2 969 SNP genotypes. The cross-referenced data can be mined for various purposes,including stress responses and resilience traits.While SLU Gigacow is intended to collect from Swedish farms and support Swedish researchers,it serves as a proof-of-concept that data from diverse sources and systems at dairy farms can be automatically gathered and collated in a researcherfriendly format. We believe that this shows the great utility of farm-to-table statistics and increased FMS interoperability. SLU Gigacow was constructed essentially without standardised interfaces for dairy data communication. Establishment of such data standards is ongoing within the industry but the development and adoption of standards take time and rely on active participation of multiple actors. The researchdriven approach of SLU Gigacow enables more rapidand integrated measurements of many facets of the dairy farm environment,creates new niches for PLF equipment,and opens great new vistas of information to explore for adaptation to changing climates.

Key words: dairy science, big data, resilience

[1] Bengtsson C,Thomasen J R,Kargo M,et al.Emphasis on resilience in dairy cattle breeding: Possibilities and consequences[J].Journal of Dairy Science,2022,105(9):7588-7599.
[2] Kašná E,Zavadilová L.General resilience in dairy cows: A review[J].Czech Journal of Animal Science,2022,67(12):475-482.
[3] Carabaño M J,Ramón M,Díaz C,et al.BREEDING AND GENETICS SYMPOSIUM: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review[J].Journal of Animal Science,2017,95(4):1813-1826.
[4] Chen S Y,Boerman J P,Gloria L S,et al.Genomic-based genetic parameters for resilience across lactations in North American Holstein cattle based on variability in daily milk yield records[J].Journal of Dairy Science,2023,106(6):4133-4146.
[5] Lokhorst C,de Mol R M,Kamphuis C. Invited review:Big Data in precision dairy farming[J].Animal (Cambridge, England),2019,13((7):1519-1528.
[6] Velayudhan S M,Sven K,Veerasamy S,et al.Climate-resilient dairy cattle production:Applications of genomic tools and statistical models[J].Frontiers in Veterinary Science,2021,8:625189-625189.
[7] CRAN.DB:R Database Interface. R package version 1.1.3[EB/OL].https://CRAN.R-project.org/package=DBI,2022.
[8] CRAN.Odbc:Connect to ODBC Compatible Databases(using the DBI Interface).R package version 1.3.5[EB/OL].https://CRAN.R-project.org/package=odbc,2023.
[9] Hermans K,Waegeman W,Opsomer G,et al.Novel approaches to assess the quality of fertility data stored in dairy herd management software[J].Journal of Dairy Science,2017,100(5):4078-4089.
[10] CRAN.Dplyr:A grammar of data manipulation.R package version 1.1.2[EB/OL].https://CRAN.R-project.org/package=dplyr,2023.
[1] 李杰超, 史记, 刘顿成, 冯小宇, 庞舒月, 马翀. 奶牛智慧健康管理系统在个体病例早期诊断中的应用[J]. 中国乳业, 2024, 0(11): 22-28.
[2] 刘文华, 张逸雪, 韩臣波, 何宏, 彭夏雨, 魏勇. 应用大数据云平台提升生鲜乳运输安全及效率的研究[J]. 中国乳业, 2022, 0(8): 51-55.
[3] 胡婷婷, 张金梦, 王翌翀, 郭凯军, 张仁龙. 区块链+5G物联网和大数据在奶牛智能化生产中的应用[J]. 中国乳业, 2021, 0(5): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!