中国乳业 ›› 2025, Vol. 0 ›› Issue (6): 59-66.doi: 10.12377/1671-4393.25.06.10

• 饲养管理 • 上一篇    下一篇

人工智能与传感器技术在奶牛养殖业中的应用与挑战

李潘潘1, 王昌雷1, 李兴栋1, 杨萍2, 刘玉升3, 陶家树4,*   

  1. 1 郓城县农业农村局, 山东菏泽 274000;
    2 山东省农业科学院, 山东济南 250100;
    3 山东农业大学, 山东泰安 271018;
    4 山东省畜牧总站, 山东济南 250100
  • 出版日期:2025-06-25 发布日期:2025-07-04
  • 通讯作者: *陶家树,山东德州人,硕士,正高级畜牧师,研究方向为家禽育种及技术。
  • 作者简介:李潘潘(1987-),男,山东金乡人,硕士,农艺师,研究方向为农业技术;王昌雷(1983-),男,山东郓城人,本科,农艺师,研究方向为农业技术;李兴栋(1984-),男,山东郓城人,大专,助理农艺师,研究方向为农业技术;杨萍(1980-),女,山东济南人,博士,研究员,研究方向为农业农村经济;刘玉升(1964-),男,山东莒南人,博士,教授,硕士生导师,研究方向为资源利用与植物保护。
  • 基金资助:
    山东省重点研发计划资助(2023LZGC018)

Application and Challenges of Artificial Intelligence and Sensor Technology in Dairy Cattle Farming

LI Panpan1, WANG Changlei1, LI Xingdong1, YANG Ping2, LIU Yusheng3, TAO Jiashu4,*   

  1. 1 Yuncheng County Agricultural and Rural Bureau, Heze Shandong 274000;
    2 Shandong Academy of Agricultural Sciences, Jinan Shandong 250100;
    3 Shandong Agricultural University, Tai'an Shandong 271018;
    4 Shandong Provincial Animal Husbandry Services, Jinan Shandong 250100
  • Online:2025-06-25 Published:2025-07-04

摘要: 本文评估了人工智能(AI)与传感器技术在奶牛养殖业中的应用潜力,着重剖析物联网(IoT)在长途家畜运输中的创新应用,特别是在家畜识别与普查方面的进展。这些技术显著提升了运输过程中的精确可追溯性,尤其在监控奶牛行为模式和实时体重变化等方面成效显著。通过应用这些技术,不仅提升了动物福利、减少了供应链误差、提高了生产力,还推动了市场准入范围的扩大,进而增强了全球竞争力。然而,技术的推广面临个体化管理、经济分析、数据安全、隐私保护、技术适应性、人员培训以及可持续性等诸多挑战,且这些挑战与动物福利、数据滥用和环境影响等伦理议题紧密相关。本研究提出了技术整合的成功框架,并强调持续学习和适应的重要性。AI和传感器技术在推动奶牛养殖行业朝着更可持续、高效方向发展的潜力日益凸显。

关键词: 精准养殖, 智能农业, 数字化家畜管理, 动物福利技术

Abstract: This paper assessed the application potential of artificial intelligence(AI)and sensor technology in the dairy cattle farming industry,with a focus on analyzing the innovative applications of the Internet of Things (IoT)in long-distance livestock transportation, especially the progress in livestock identification and census. These technologies have significantly enhanced the precise traceability during transportation,particularly in monitoring the behavioral patterns of dairy cows and real-time weight changes. By applying these technologies,animal welfare has been improved,supply chain errors have been reduced,productivity has been increased,and market access has been expanded,thereby strengthening global competitiveness. However,the adoption of these technologies faces challenges such as individualized management,economic analysis,data security,privacy protection,technological adaptability,personnel training,and sustainability,and these challenges are closely related to ethical issues such as animal welfare,data abuse,and environmental impact. This study present a successful framework for technological integration and emphasized the importance of continuous learning and adaptation. The potential of AI and sensor technology in advancing the dairy cattle farming industry towards a more sustainable and efficient future is becoming increasingly evident.

Key words: precision farming, smart agriculture, digital livestock management, animal welfare technology

[1] Gao J,Li X,Zhang G,et al.Probiotics in the dairy industry—Advances and opportunities[J].Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3937-3982.
[2] Siachos N,Neary J M,Smith R F,et al.Automated dairy cattle lameness detection utilizing the power of artificial intelligence;current status quo and future research opportunities[J].The Veterinary Journal(1997),2024,304:106091.
[3] Pei X,Li J,Zhou L,et al.Spatiotemporal characteristics and influencing factors of non-CO2 greenhouse gas emission intensity from China's livestock sector[J].Science of the Total Environment,2025,958:178191.
[4] Weigele H C,Gygax L,Steiner A,et al.Moderate lameness leads to marked behavioral changes in dairy cows[J].Journal of Dairy Science,2017,101(3):2370-2382.
[5] Berry D P,Evans R D,Kelleher M M.Prediction of genetic merit for live weight and body condition score in dairy cows using routinely available linear type and carcass data[J].Journal of Dairy Science,2021,104(6):6885-6896.
[6] Aquilani C,Confessore A,Bozzi R,et al.Review:Precision livestock farming technologies in pasture-based livestock systems[J].Animal(Cambridge,England),2022,16(1):100429.
[7] Neethirajan S.Affective state recognition in livestock—Artificial intelligence approaches[J].Animals(Basel),2022,12(6):759.
[8] Fuentes S,Gonzalez Viejo C,Tongson E,et al.Biometric physiological responses from dairy cows measured by visible remote sensing are good predictors of milk productivity and quality through artificial intelligence[J].Sensors(Basel,Switzerland),2021,21(20):6844.
[9] Neethirajan S.Transforming the adaptation physiology of farm animals through sensors[J].Animals(Basel),2020,10(9):1512.
[10] Gupta S,Kuehn L A,Clawson M L.Early detection of infectious bovine keratoconjunctivitis with artificial intelligence[J].Veterinary Research( Paris),2023,54(1):122.
[11] Hajnal É,Kovács L,Vakulya G.Dairy cattle rumen bolus developments with special regard to the applicable artificial intelligence (AI) Methods[J].Sensors(Basel,Switzerland),2022,22(18):6812.
[12] Lenzi J,Barnas A F,Elsaid A A,et al.Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys[J].Scientific Reports,2023,13(1):947.
[13] Matthews D,Pabiou T,Evans R D,et al.Predicting carcass cut yields in cattle from digital images using artificial intelligence[J].Meat Science,2022,184:108671.
[14] Cabrera V E,Barrientos-Blanco J A,Delgado H,et al.Symposium review:Real-time continuous decision making using big data on dairy farms[J].Journal of Dairy Science,2020,103(4):3856-3866.
[15] Aguilar-Lazcano C A,Espinosa-Curiel I E,Ríos-Martínez J A,et al.Machine learning-based sensor data fusion for animal monitoring:Scoping review[J].Sensors(Basel),2023,23(12):5732.
[16] Macinnes J I.“Big Data” in animal health research—Opportunities and challenges[J].Animal Health Research Reviews,2020,21(1):1-2.
[17] Duruz S,Vajana E,Burren A,et al.Big dairy data to unravel effects of environmental,physiological and morphological factors on milk production of mountain-pastured Braunvieh cows[J].Royal Society Open Science,2020,7(7):200638.
[18] Jeon E,Jang S,Yeo J M,et al.Impact of climate change and heat stress on milk production in Korean Holstein cows:A large-scale data analysis[J].Animals(Basel),2023,13(18):2946.
[19] Franceschini S,Grelet C,Leblois J,et al.Can unsupervised learning methods applied to milk recording big data provide new insights into dairy cow health?[J].J Dairy Sci,2022,105(8):6760-6772.
[20] Lee D,Yoo D,Kim H,et al.Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system:big data analysis[J].Journal of Animal Science and Technology,2023,65(3):588-595.
[21] Burns A,Wilmer H,Miller R S,et al.Precision animal husbandry:Using artificial intelligence for camera traps to optimize animal production and management decision support systems[J].Animal Frontiers,2025,14(6):68-71.
[22] Wang S,Jiang H,Qiao Y,et al.The research progress of vision-based artificial intelligence in smart pig farming[J].Sensors(Basel,Switzerland),2022,22(17):6541.
[23] Rebez E B,Sejian V,Silpa M V,et al.Applications of artificial intelligence for heat stress management in ruminant livestock[J].Sensors(Basel,Switzerland),2024,24(18):5890.
[24] Arshad M F,Burrai G P,Varcasia A,et al.The groundbreaking impact of digitalization and artificial intelligence in sheep farming[J].Research in Veterinary Science,2024,170:105197.
[25] Mar C C,Zin T T,Tin P,et al.Cow detection and tracking system utilizing multi-feature tracking algorithm[J].Scientific Reports,2023,13(1):17423.
[26] Hendriks S J,Qasim M,Edwards J P.Relationships between paddock-level pasture mass and cow data derived from GPS and behavior-monitoring on-animal sensors in rotationally grazed dairy systems[J].Journal of Dairy Science,2025,108(2):1644-1658.
[27] Summerfield G I,De Freitas A,Van Marle-Koster E,et al.Automated cow body condition scoring using multiple 3D cameras and convolutional neural networks[J].Sensors(Basel,Switzerland),2023,23(22):9051.
[28] Aubé L,Mialon M M,Mollaret E,et al.Review:Assessment of dairy cow welfare at pasture:measures available,gaps to address,and pathways to development of ad-hoc protocols[J].Animal(Cambridge,England),2022,16(8):100597.
[29] González-Sánchez C,Sánchez-Brizuela G,Cisnal A,et al.Prediction of cow calving in extensive livestock using a new neck-mounted sensorized wearable device:A pilot study[J].Sensors(Basel,Switzerland),2021,21(23):8060.
[30] Cerri R L A,Burnett T A,Madureira A M L,et al.Symposium review:Linking activity-sensor data and physiology to improve dairy cow fertility[J].Journal of Dairy Science,2020,104(1):1220-1231.
[31] Stygar A H,Frondelius L,Berteselli G V,et al.Measuring dairy cow welfare with real-time sensor-based data and farm records:a concept study[J].Animal(Cambridge,England),2023,17(12):101023.
[32] Knight C H.Review:Sensor techniques in ruminants:more than fitness trackers[J].Animal,2020,14(S1):s187-s195.
[33] Wang Y C,et al.Non-invasive cattle body temperature measurement using infrared thermography and auxiliary sensors[J].Sensors(Basel,Switzerland),2021,21(7):2425.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!