中国乳业 ›› 2021, Vol. 0 ›› Issue (5): 29-33.doi: 10.12377/1671-4393.21.05.06
胡婷婷1, 张金梦2, 王翌翀1, 郭凯军1,*, 张仁龙1
HU Tingting1, ZHANG Jinmeng2, WANG Yichong1, GUO Kaijun1,*, HANG Renlong1
摘要: 近年来,物联网技术和大数据挖掘分析应用逐渐深入到人们生活的各个领域。为综述物联网和大数据在奶牛生产中的发展实践,以期区块链+5G物联网、大数据更加有效的推动奶牛智慧化生产。本文对奶牛个体识别、体重测定、产奶性能、发情监测、精准饲喂、环境控制等奶牛生产区块链各个环节数据采集技术和物联网设备进行简要分析,对国内外广泛应用的几种大数据分析系统进行应用,着重分析了奶业大脑系统在奶牛生产过程中的预测功能。结果表明,奶牛生产规模化、集约化达到了一定的水平,物联网(IoT)和自动化技术逐渐在奶牛生产中起到推广应用,大数据和人工智能可以很大程度上提升牧场的管理水平和经济效益,奶业大脑系统对奶牛产奶性能、乳房炎发病风险和乳房炎发生预警等方面具有重要的指导意义。物联网、人工智能、大数据等现代化技术对奶牛生产起到推动作用,区块链+5G物联网和大数据在奶牛生产中的实践应用,可以保证牛奶的质量安全,有望带来更大的社会效益和生态效益。
[1] Bongsug C. The evolution of the Internet of Things( IoT):a computational text analysis[J]. Telecommunications Policy,2019,43(10):不详. [2] Sjaak W,Lan G,Verdouw C,et al.Big data in smart farming-a review[J]. Agricultural Systems,2017,153:69-80. [3] Dias K M,Garcia S G,Clark C E F. Creating value of data:milking order and its role in future precision dairy feeding systems[A]. C Kamphuis and W Steeneveld, Precision Dairy Farming in Leeuwarden[C]. Netherlands:Wageningen Academic Publishers,2016. [4] 刘雪,李兴民,曲鲁江. 由德国汉诺威国际畜牧展(EuroTier 2018)引发的思考和启示[J]. 中国畜牧杂志,2018,54(12):148-151. [5] Pastell M,Frondelius L,Järvinen M,et al.Filtering methods to improve the accuracy of indoor positioning data for dairy cows[J].Biosystems Engineering,2018,169(1):22-31. [6] Stankovski S,Ostojic G,Senk I,et al.Dairy cow monitoring by RFID[J]. Scientia Agricola,2012,69(1):75-80. [7] 王栋轩. 基于ZigBee技术的养牛场称重系统设计:[硕士论文][D]. 保定:河北农业大学,2016. [8] Grasboll K,Kirkeby C,Nielsen S S,et al.A Robust statistical model to predict the future value of the milk production of dairy cows using herd recording data[J]. Frontiers in Veterinary Science,2017,4:13. [9] Mcdermott A,De M M,Beryyd P,et al.Cow and environmental factors associated with protein fractions and free amino acids predicted using mid-infrared spe-ctroscopy in bovine milk[J]. Journal of Dairy Science,2017,100(8):6272-6284. [10] Kaniyamattam K,Vries A D.Agreement between milk fat、protein、and lactose observations collected from the Dairy Herd Improvement Association(DHIA)and a real-time milk analyzer[J]. Journal of Dairy Science,2014,97(5):2896-2908. [11] 曹学浩,黄善琦,马树刚,等. 活动量监测技术的研究及其在奶牛繁殖管理中的应用[J]. 中国奶牛,2013(8):37-40. [12] 罗学明,王小庆,沈佳栾,等. SCR发情监测系统在奶牛繁殖体系中的应用[J]. 浙江农业科学,2019,60(12):2380-2381 [13] 李新社,李新媛,俞联平,等. 以混合青贮料为基础的全混合日粮饲喂奶牛效果试验[J]. 中国草食动物科学,2014,34(3):38-40. [14] 赵毅,程睿,赵尔迪. 饲喂机器人的发展及研制现状[J]. 农业科技与装备,2015(11):29-31. [15] 贺勇,陈月和. 奶牛场环境污染与治理初探[J]. 中国乳业,2011(1):40-41. [16] 朱俊峰,于书云,林雨鑫,等. 规模奶牛场粪污资源化利用浅析[J]. 中国畜禽种业,2018,14(12):106-107. [17] Grzesiak W,Błaszczyk P,Lacroix R.Methods of predicting milk yield in dairy cows—Predictive capabilities of Wood's lactation curve and artificial neural networks(ANNs)[J]. Computers and Electronics in Agriculture,2006,54(2):69-83. [18] Sun Z,Samarasinghe S,Jago J G.Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks[J]. Journal of Dairy Research,2010,77(2):168-175. [19] Dongre V B,Gandhi R S,Singha A,et al.Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle[J]. Livestock Science,2012,147(1-3):192-197. [20] Gorgulu O.Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks[J]. South African Journal of Animal Science,2012,42(3):280-287. [21] 王海彬,王洪斌,肖建华. 奶牛精细养殖信息技术进展[J]. 中国奶牛,2009(3):15-17. [22] 白云峰,谷子林,霍贵成. 专家系统在奶牛生产中的应用[J]. 中国奶牛,2005(6):21-23. [23] Ele S I,Umoh E E,Adesola W A.An overview of the development principles,stages and building blocks of Expert System[J]. West African Journal of Industrial&Academic Research,2015,2(1):44-58. [24] 刘晗,张斌,马隽,等. 奶牛肢蹄病辅助诊断专家系统的设计与实现[J]. 中国畜牧兽医,2018,45(4):1098-1105. [25] 王连英,张雪平,徐承斌,等. 奶牛疾病专家诊断系统的应用及效果[J]. 黑龙江动物繁殖,2016,24(3):55-56. [26] 马雪. 奶牛专家系统的研究与应用[J]. 天津农业科学,2010,16(6):128-130. [27] Ferria M C,Chstensen A,Wangen S R.Symposium review:Dairy Brain-Informing decisions on dairy farms using data analytics[J]. Journal of Dairy Science,2020,103(4):3874-3881. [28] Cabrare V E,Barrientos-Blanco J A,Delgado H,et al. Symposium review: Real-time continuous decision making using big data on dairy farms[J]. Journal of Dairy Science,2020,103(4):3856-3866. |
[1] | 门奎练. 黄芪浸膏粉在奶牛养殖中的应用研究进展[J]. 中国乳业, 2021, 0(9): 83-85. |
[2] | 赵新明, 魏国华. 奶牛标准化健康养殖的研究[J]. 中国乳业, 2021, 0(6): 53-57. |
[3] | 闪保林. 奶牛养殖专业合作社发展模式探究[J]. 中国乳业, 2021, 0(3): 22-26. |
[4] | 张金梦, 胡婷婷, 余斯炅, 王翌翀, 郭凯军, 张仁龙. 物联网技术在奶牛养殖的应用现状及展望[J]. 中国乳业, 2021, 0(2): 25-29. |
[5] | 郭泽, 周京, 冀少博, 施睿喆, 张进阳. 奶业振兴视角下河北省奶牛养殖成本收益分析[J]. 中国乳业, 2020, 0(9): 14-16. |
[6] | 热孜完古丽·艾买尔. 浅谈新疆阿克苏地区奶牛标准化规模养殖措施建议[J]. 中国乳业, 2020, 0(9): 32-32. |
[7] | 张向宏, 柳启武, 焦剑平. 粪便分离筛在提高奶业生产效率中的作用[J]. 中国乳业, 2020, 0(9): 33-37. |
[8] | 夏雪, 侍啸, 柴秀娟. 人工智能驱动智慧奶牛养殖的思考与实践[J]. 中国乳业, 2020, 0(8): 5-9. |
[9] | 李志才, 孙志强, 姜竹会, 齐文娟. 物联网人工智能在奶羊生产中的应用[J]. 中国乳业, 2020, 0(8): 48-50. |
[10] | 金迪, 海鹏, 彭华. 荷兰奶业发展现状及与中国的合作研究[J]. 中国乳业, 2020, 0(6): 28-37. |
[11] | 靳文仲. 全株玉米青贮主要质量指标解析[J]. 中国乳业, 2020, 0(5): 37-38. |
[12] | 牛江波, 张艳新, 杜晨露. 奶牛养殖场粪污资源化模式选择及影响因素研究——以河北省为例[J]. 中国乳业, 2020, 0(11): 17-20. |
[13] | 孙雨坤. 奶牛养殖管理技术要点[J]. 中国乳业, 2020, 0(1): 53-55. |
[14] | 周亚平, 孟兴祥, 刘琴, 成玉梅, 张泉鹏, 张利坤, 李春, 施开平. 云南省昆明市某牧场奶牛生产性能分析[J]. 中国乳业, 2019, 0(9): 42-45. |
[15] | 焦蓓蕾, 贺永强, 杨爱芳, 赵杰军. 奶牛福利五项原则的探讨研究[J]. 中国乳业, 2019, 0(10): 40-43. |
|