中国乳业 ›› 2021, Vol. 0 ›› Issue (6): 16-22.doi: 10.12377/1671-4393.21.06.03

• 繁殖育种专题 • 上一篇    下一篇

基因组选择背景下奶牛体外受精的40 年

蔡高占1, 张汝美1, 王亚琴2, 黄国锋3, 李俊婷4, 刘小涛5, 姚文龙6, 周浩4, 李建斌1, 仲跻峰1,*   

  1. 1 山东省农业科学院畜牧兽医研究所,山东济南 250100;
    2 宁波市农业村局,浙江宁波 315033;
    3 余姚市陆埠镇农业农村办公室,浙江余姚 315420;
    4 宁波市鄞州区农业农村局,浙江宁波 315100;
    5 宁波市牛奶集团有限公司,浙江宁波 315033;
    6 宁波市鄞州瞻岐鹰山牛场,浙江宁波 315100
  • 出版日期:2021-06-25 发布日期:2021-07-08
  • 通讯作者: *仲跻峰(1964-),男,江苏南京人,博士,研究员,研究方向为动物遗传育种与繁殖。
  • 作者简介:蔡高占(1989-),男,山东菏泽人,硕士,助理研究员,研究方向为动物遗传育种与繁殖;张汝美(1969-),女,山东临清人,农艺师,研究方向为动物遗传育种与繁殖;王亚琴(1966-),女,浙江象山人,农业推广硕士,推广研究员,研究方向为品种选育、种草养畜和饲草资源化利用;黄国锋(1968-),男,浙江余姚人,本科,兽医师,研究方向为动物饲养管理与疫病防控;李俊婷(1980-),女,山西临汾人,硕士,畜牧师,研究方向为畜牧;刘小涛(1978-),男,浙江宁波人,本科,工程师,研究方向为乳品技术和工程;姚文龙(1965-),男,浙江宁波人,牛场负责人,研究方向为肉牛养殖;周 浩(1973-),男,浙江宁波人,兽医师,研究方向为动物医学;李建斌(1974-),男,河北承德人,博士,研究员,研究方向为动物遗传育种与繁殖。
  • 基金资助:
    财政部和农业农村部:“国家现代农业产业技术体系资助”(项目编号:CARS-36); 北沙牛遗传物质保存与人工授精技术应用示范(项目编号:2019AS0010); 奶牛高产核心群及β酪蛋白A2型高端品系选育与示范(项目编号:2019B10018); 山东省农业科学院农业科技创新工程项目(CXGC2021A32)

40 Years of Bovine IVF in the Context of Genome Selection

CAI Gaozhan1, ZHANG Rumei1, WANG Yaqin2, HUANG Guofeng3, LI Junting4, LIU Xiaotao5, YAO Wenlong6, ZHOU Hao4, LI Jianbin1, ZHONG Jifeng1,*   

  1. 1Institute of animal husbandry and veterinary medicine,Academy of Agricultural Sciences,Jinan Shandong 250100;
    2Agricultural village Bureau,Ningbo Zhejiang 315033;
    3Agricultural and rural Office of Lubu Town,Yuyao Zhejiang 315420;
    4Agricultural and rural Bureau of Yinzhou District,Ningbo Zhejiang 315100;
    5Ningbo Milk Group Co.,Ltd,Ningbo Zhejiang 315033;
    6Yingshan cattle farm,Zhanqi Town,Yinzhou District,Ningbo Zhejiang 315100
  • Online:2021-06-25 Published:2021-07-08

摘要: 体外受精(In Vitro Fertilization,IVF)等复杂技术的发展需要多年的试验,有时需要比较几个物种,以了解如何为卵母细胞、精子和早期胚胎创造合适的体外环境。配子生理机能和配子交互作用等物种特征是最近才进化出来的性状,必须在各自物种的背景下加以分析。世界首例试管婴儿Louise Brown出生后的近40 年里,IVF技术取得了很大进步,目前已在世界各地多种家养和非家养动物物种中得到应用。但这并不意味着该技术完全成熟或令人满意,还有许多问题需要解决,还有若干程序需要优化。自从IVF技术允许商业化开发以后,奶牛IVF的发展尤其引人关注,其使用规模堪比人类的体外受精(数百万新生儿)。犊牛甚至是胚胎的基因组选择与性别鉴定和冷冻技术相结合,正推动奶牛IVF进入一个新时代。本文回顾了过去40 年奶牛IVF取得的成绩和存在的困难,并提出了未来几年所面临的挑战。

关键词: 基因组选择, 体外受精(IVF), 奶牛, 进展

Abstract: The development of complex technologies such as in vitro fertilization (IVF) needs many years of experiments,sometimes it is necessary to compare several species,to understand how to create a suitable in vitro environment for oocytes,sperm and early embryos.The physiological function of gametes and gamete interaction are recently evolved traits,which must be analyzed in the context of each species.In the past 40 years after Louis Brown was born,IVF technology has made great progress and has been applied in a variety of domestic and non domestic animal species all over the world. However,this does not mean that the technology is completely mature or satisfactory.There are still many problems to be solved and some programs to be optimized.Since IVF technology was allowed to be commercialized,the development of cow IVF has attracted special attention.Its scale of use is comparable to that of human IVF (millions of newborns).The combination of genomic selection,sex identification and cryopreservation of calves and even embryos is pushing IVF into a new era.This paper reviews the success and shortcomings of IVF in cattle in the past 40 years, and describes the challenges to be overcome in the next few years.

Key words: genome selection, in vitro fertilization, cow, progress

[1] Hasler, John F.Forty years of embryo transfer in cattle: A review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces[J]. Theriogenology. 2014, 81(1): 152-169.
[2] Daub K, Lindemann S, Langer H, et al.The history of assisted human conception with especial reference to endocrinology.[J]. Experimental & Clinical Endocrinology & Diabetes. 1996, 104(03): 183-204.
[3] Brackett B G, Daniel B, Boice M L, et al.Normal development following in vitro fertilization in the cow.[J]. Biology of Reproduction. 1982(1): 147-158.
[4] Parrish, John J.Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin.[J]. Theriogenology. 2014, 81(1): 67-73.
[5] Parrish J J, Susko-Parrish J L, Leibfried-Rutledge M L, et al. Bovine in vitro fertilization with frozen-thawed semen[J]. Theriogenology. 1986, 25(4): 591-600.
[6] Edwards R G.Maturation in vitro of Mouse, Sheep, Cow, Pig, Rhesus Monkey and Human Ovarian Oocytes[J]. Nature. 1965, 208(5008): 349-351.
[7] Felmer R N, Arias M E, Mu Oz G A, et al. Effect of different sequential and two-step culture systems on the development, quality, and RNA expression profile of bovine blastocysts produced in vitro.[J]. Molecular Reproduction & Development. 2011, 78(6): 403-414.
[8] Lu K H, Gordon I, Gallagher M, et al.Pregnancy established in cattle by transfer of embryos derived from in vitro fertilisation of oocytes matured in vitro.[J]. Veterinary Record. 1987, 121(11): 259.
[9] Ball G D, Leibfried M L, Ax R L, et al.Maturation and fertilization of bovine oocytes in vitro[J]. Journal of Dairy Science. 1984, 67(11): 2775-2785.
[10] Leemans B, Gadella B M, Stout T, et al.Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization[J]. Reproduction. 2016, 152(6): R233.
[11] Douville G, Sirard M A.Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles[J]. Journal of Ovarian Research. 2014, 7.
[12] Dias F, Khan M, Sirard M A, et al.Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle.[J]. Reproduction. 2013, 146(2): 181-191.
[13] Nivet A L, Bunel A, Labrecque R, et al.FSH withdrawal improves developmental competence of oocytes in the bovine model[J]. Reproduction. 2012, 143(2): 165-171.
[14] Khan D R, Landry D A, Fournier É, et al.Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows[J]. Physiological Genomics. 2016, 48(8): 633-643.
[15] Lonergan P, Fair T.In vitro-produced bovine embryos: dealing with the warts.[J]. Theriogenology. 2008, 69(1): 17-22.
[16] Cagnone G, Sirard M A.The embryonic stress response to in vitro culture: insight from genomic analysis[J]. Reproduction. 2016: 16-391.
[17] Sirard A. M.The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model[J]. Journal of Developmental Origins of Health & Disease. 2017: 1.
[18] Yum S Y, Youn K Y, Choi W J, et al.Development of genome engineering technologies in cattle: from random to specific[J]. Journal of Animal Science & Biotechnology. 2018, 9(1): 16.
[1] 哈那提·胡斯木汗. 规模化奶牛场粪污处理方法概述[J]. 中国乳业, 2021, 0(9): 60-63.
[2] 杨润, 帕热克·爱尼娃尔, 阿衣努尔·阿不力孜. 绿色养殖技术在优质奶牛养殖中的应用[J]. 中国乳业, 2021, 0(9): 64-66.
[3] 门奎练. 黄芪浸膏粉在奶牛养殖中的应用研究进展[J]. 中国乳业, 2021, 0(9): 83-85.
[4] 王治德, 初莉莉. 奶牛产后常见病防治[J]. 中国乳业, 2021, 0(9): 89-93.
[5] 潘磊. 奶牛子宫内膜炎发生的原因、症状及防治措施[J]. 中国乳业, 2021, 0(9): 94-96.
[6] 石芳权, 王辉, 赵一广, 熊本海. 数字化技术与装备在奶牛养殖中的应用[J]. 中国乳业, 2021, 0(8): 60-67.
[7] 沈义媛, 童津津, 熊本海, 蒋林树. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, 0(8): 68-75.
[8] 高瑞军. 奶牛乳房炎的治疗与预防[J]. 中国乳业, 2021, 0(8): 76-79.
[9] 张召议, 包雨鑫, 王慧玲. 奶牛乳房炎研究进展[J]. 中国乳业, 2021, 0(8): 84-87.
[10] 周国燕, 陈鲁喜, 孙艳, 万杰, 陈彬, 张涛, 安拉扎, 仇剑宇. 四川凉山地区奶牛乳房炎主要病原菌分离鉴定及药敏情况分析[J]. 中国乳业, 2021, 0(8): 88-95.
[11] 姜富贵, 李德鹏, 成海建, 苏文政, 张召坤, 时光, 宋恩亮. 过瘤胃氨基酸对泌乳早期奶牛生产性能、乳成分和血液生化指标的影响[J]. 中国乳业, 2021, 0(7): 25-31.
[12] 徐伟, 董飞, 张赛赛, 姜兴刚, 任德全, 马志愤. 2020年国内18 省份不同月份奶牛繁殖和产奶性能表现研究[J]. 中国乳业, 2021, 0(7): 32-38.
[13] 付国兵, 张丽明, 梁瑶. 规模奶牛场消毒措施和注意事项[J]. 中国乳业, 2021, 0(7): 56-58.
[14] 江波. 牛结核病的防控[J]. 中国乳业, 2021, 0(7): 63-67.
[15] 张胜利, 孙东晓. 奶牛种业的昨天、今天和明天[J]. 中国乳业, 2021, 0(6): 3-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!