中国乳业 ›› 2021, Vol. 0 ›› Issue (6): 16-22.doi: 10.12377/1671-4393.21.06.03
蔡高占1, 张汝美1, 王亚琴2, 黄国锋3, 李俊婷4, 刘小涛5, 姚文龙6, 周浩4, 李建斌1, 仲跻峰1,*
CAI Gaozhan1, ZHANG Rumei1, WANG Yaqin2, HUANG Guofeng3, LI Junting4, LIU Xiaotao5, YAO Wenlong6, ZHOU Hao4, LI Jianbin1, ZHONG Jifeng1,*
摘要: 体外受精(In Vitro Fertilization,IVF)等复杂技术的发展需要多年的试验,有时需要比较几个物种,以了解如何为卵母细胞、精子和早期胚胎创造合适的体外环境。配子生理机能和配子交互作用等物种特征是最近才进化出来的性状,必须在各自物种的背景下加以分析。世界首例试管婴儿Louise Brown出生后的近40 年里,IVF技术取得了很大进步,目前已在世界各地多种家养和非家养动物物种中得到应用。但这并不意味着该技术完全成熟或令人满意,还有许多问题需要解决,还有若干程序需要优化。自从IVF技术允许商业化开发以后,奶牛IVF的发展尤其引人关注,其使用规模堪比人类的体外受精(数百万新生儿)。犊牛甚至是胚胎的基因组选择与性别鉴定和冷冻技术相结合,正推动奶牛IVF进入一个新时代。本文回顾了过去40 年奶牛IVF取得的成绩和存在的困难,并提出了未来几年所面临的挑战。
[1] Hasler, John F.Forty years of embryo transfer in cattle: A review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces[J]. Theriogenology. 2014, 81(1): 152-169. [2] Daub K, Lindemann S, Langer H, et al.The history of assisted human conception with especial reference to endocrinology.[J]. Experimental & Clinical Endocrinology & Diabetes. 1996, 104(03): 183-204. [3] Brackett B G, Daniel B, Boice M L, et al.Normal development following in vitro fertilization in the cow.[J]. Biology of Reproduction. 1982(1): 147-158. [4] Parrish, John J.Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin.[J]. Theriogenology. 2014, 81(1): 67-73. [5] Parrish J J, Susko-Parrish J L, Leibfried-Rutledge M L, et al. Bovine in vitro fertilization with frozen-thawed semen[J]. Theriogenology. 1986, 25(4): 591-600. [6] Edwards R G.Maturation in vitro of Mouse, Sheep, Cow, Pig, Rhesus Monkey and Human Ovarian Oocytes[J]. Nature. 1965, 208(5008): 349-351. [7] Felmer R N, Arias M E, Mu Oz G A, et al. Effect of different sequential and two-step culture systems on the development, quality, and RNA expression profile of bovine blastocysts produced in vitro.[J]. Molecular Reproduction & Development. 2011, 78(6): 403-414. [8] Lu K H, Gordon I, Gallagher M, et al.Pregnancy established in cattle by transfer of embryos derived from in vitro fertilisation of oocytes matured in vitro.[J]. Veterinary Record. 1987, 121(11): 259. [9] Ball G D, Leibfried M L, Ax R L, et al.Maturation and fertilization of bovine oocytes in vitro[J]. Journal of Dairy Science. 1984, 67(11): 2775-2785. [10] Leemans B, Gadella B M, Stout T, et al.Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization[J]. Reproduction. 2016, 152(6): R233. [11] Douville G, Sirard M A.Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles[J]. Journal of Ovarian Research. 2014, 7. [12] Dias F, Khan M, Sirard M A, et al.Differential gene expression of granulosa cells after ovarian superstimulation in beef cattle.[J]. Reproduction. 2013, 146(2): 181-191. [13] Nivet A L, Bunel A, Labrecque R, et al.FSH withdrawal improves developmental competence of oocytes in the bovine model[J]. Reproduction. 2012, 143(2): 165-171. [14] Khan D R, Landry D A, Fournier É, et al.Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian follicle maturity and oocyte developmental competence in cows[J]. Physiological Genomics. 2016, 48(8): 633-643. [15] Lonergan P, Fair T.In vitro-produced bovine embryos: dealing with the warts.[J]. Theriogenology. 2008, 69(1): 17-22. [16] Cagnone G, Sirard M A.The embryonic stress response to in vitro culture: insight from genomic analysis[J]. Reproduction. 2016: 16-391. [17] Sirard A. M.The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model[J]. Journal of Developmental Origins of Health & Disease. 2017: 1. [18] Yum S Y, Youn K Y, Choi W J, et al.Development of genome engineering technologies in cattle: from random to specific[J]. Journal of Animal Science & Biotechnology. 2018, 9(1): 16. |
[1] | 哈那提·胡斯木汗. 规模化奶牛场粪污处理方法概述[J]. 中国乳业, 2021, 0(9): 60-63. |
[2] | 杨润, 帕热克·爱尼娃尔, 阿衣努尔·阿不力孜. 绿色养殖技术在优质奶牛养殖中的应用[J]. 中国乳业, 2021, 0(9): 64-66. |
[3] | 门奎练. 黄芪浸膏粉在奶牛养殖中的应用研究进展[J]. 中国乳业, 2021, 0(9): 83-85. |
[4] | 王治德, 初莉莉. 奶牛产后常见病防治[J]. 中国乳业, 2021, 0(9): 89-93. |
[5] | 潘磊. 奶牛子宫内膜炎发生的原因、症状及防治措施[J]. 中国乳业, 2021, 0(9): 94-96. |
[6] | 石芳权, 王辉, 赵一广, 熊本海. 数字化技术与装备在奶牛养殖中的应用[J]. 中国乳业, 2021, 0(8): 60-67. |
[7] | 沈义媛, 童津津, 熊本海, 蒋林树. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, 0(8): 68-75. |
[8] | 高瑞军. 奶牛乳房炎的治疗与预防[J]. 中国乳业, 2021, 0(8): 76-79. |
[9] | 张召议, 包雨鑫, 王慧玲. 奶牛乳房炎研究进展[J]. 中国乳业, 2021, 0(8): 84-87. |
[10] | 周国燕, 陈鲁喜, 孙艳, 万杰, 陈彬, 张涛, 安拉扎, 仇剑宇. 四川凉山地区奶牛乳房炎主要病原菌分离鉴定及药敏情况分析[J]. 中国乳业, 2021, 0(8): 88-95. |
[11] | 姜富贵, 李德鹏, 成海建, 苏文政, 张召坤, 时光, 宋恩亮. 过瘤胃氨基酸对泌乳早期奶牛生产性能、乳成分和血液生化指标的影响[J]. 中国乳业, 2021, 0(7): 25-31. |
[12] | 徐伟, 董飞, 张赛赛, 姜兴刚, 任德全, 马志愤. 2020年国内18 省份不同月份奶牛繁殖和产奶性能表现研究[J]. 中国乳业, 2021, 0(7): 32-38. |
[13] | 付国兵, 张丽明, 梁瑶. 规模奶牛场消毒措施和注意事项[J]. 中国乳业, 2021, 0(7): 56-58. |
[14] | 江波. 牛结核病的防控[J]. 中国乳业, 2021, 0(7): 63-67. |
[15] | 张胜利, 孙东晓. 奶牛种业的昨天、今天和明天[J]. 中国乳业, 2021, 0(6): 3-10. |
|