中国乳业 ›› 2024, Vol. 0 ›› Issue (5): 123-130.doi: 10.12377/1671-4393.24.05.23

• 乳品加工 • 上一篇    下一篇

牛羊乳脂肪球膜稳定性及非靶向脂质组学差异研究

孟毅1, 周银焜1, 魏怡2, 薛海燕2,*, 刘晓凤2   

  1. 1 陕西金牛乳业有限公司,陕西渭南 714000;
    2 陕西科技大学食品与生物工程学院,陕西西安 710021
  • 出版日期:2024-05-25 发布日期:2024-06-11
  • 通讯作者: *薛海燕(1979-),女,陕西西安人,博士,教授,研究方向为食品加工与质量控制技术。
  • 作者简介:孟 毅(1991-),女,陕西西安人,本科,工程师,研究方向为乳制品质量与新产品创制;周银焜(1985-),男,湖北黄冈人,本科,工程师,研究方向为新型乳制品研发与检测;魏 怡(2000-),女,甘肃天水人,本科,研究方向为乳制品研究与加工;刘晓凤(1999-),女,陕西榆林人,硕士,研究方向为乳制品检测。
  • 基金资助:
    陕西省秦创原“科学家+工程师”队伍(2022KXJ-011),陕西科技大学博士启动基金(2023BJ-20),陕西省科技计划项目(2022GY-361,2020ZDLNY02-09)

Stability of Bovine and Goat Milk Fat Globule Membranes and Differences in Untargeted Lipidomics

MENG Yi1, ZHOU Yinkun1, WEI Yi2, XUE Haiyan2,*, LIU Xiaofeng2   

  1. 1Shaanxi Jinniu Dairy Co.,Ltd.,Weinan Shaanxi 714000;
    2College of Food and Biological Engineering,Shaanxi University of Science & Technology,Xi'an,Shaanxi 710021
  • Online:2024-05-25 Published:2024-06-11

摘要: 以我国关中地区中国荷斯坦牛与奶山羊为研究对象,基于非靶向脂质组学技术,分析乳脂肪球膜脂质,筛选膜上差异脂质。结果表明,在牛羊乳MFGM中分别检测到3 004 种和2 857 种脂质。牛乳中磷脂、糖脂、固醇和鞘脂分别占除甘油酯外其他脂质总含量75.94%、8.29%、3.82%和3.76%,羊乳中分别为66.98%、12.42%、4.27%、3.57%。此外,牛羊MFGM上存在1 496 种显著性差异脂质,其中TG(17︰0/10︰0/22︰6)、TG(16︰0e/8︰0/18︰1)、TG(8︰0/10︰4/14︰2)、TG(14︰0/14︰0/22︰6)和DG(15︰0/16︰0)等甘油酯分子与CL(87︰12)、PE(41︰2e)、SM(t39︰7)、CL(66︰1)、MePC(29︰2e)、PE(16︰0/16︰1)和PI(18︰1/20︰3)等MFGM脂质分子可用于牛羊乳分类鉴定以及区别检测靶点,为牛羊乳脂质检测提供理论基础。

关键词: 牛羊乳, 脂肪球膜脂质, 脂质组学, 差异分析

Abstract: Chinese Holstein cows and dairy goats in Guanzhong region of China were used as research subjects to analyze milk fat globule membrane lipids based on non-targeted lipidomics technology to screen for membrane differential lipids.The results showed that 3 004 and 2 857 lipids were detected in cow and goat milk MFGM,respectively.Phospholipids,glycolipids,sterols and sphingolipids accounted for 75.94%,8.29%,3.82% and 3.76% of the total content of lipids other than glycerides in cow's milk as compared to 66.98%,12.42%,4.27%,and 3.57% in goat's milk,respectively.In addition,1 496 significantly differentiated lipids were present on bovine and sheep MFGM,in which glyceride molecules such as TG(17︰0/10︰0/22︰6),TG(16︰0e/8︰0/18︰1),TG(8︰0/10︰4/14︰2),TG(14︰0/14︰0/22︰6),and DG(15︰0/16︰0) were associated with the same lipid profile as CL(87︰12),PE(41︰2e),SM(t39︰7),CL(66︰1),MePC(29︰2e),MFGM lipid molecules such as PE(16︰0/16︰1) and PI(18︰1/20︰3) can be used for categorization and identification of cow's and sheep's milk as well as differentiation of the targets of the assay,which can provide the theoretical basis of the detection of cow's and sheep's milk lipids.

Key words: breast's and goat's milk, lipid globule membrane lipid fatty acid, lipidomics, variance analysis

[1] Duan C,Ma L,Cai L,et al.Comparison of allergenicity among cow,goat,and horse milks using a murine model of atopy[J].Food & Function,2021,12(12):5417-5428.
[2] Zhang X,Wei W,Tao G,et al.Identification and quantification of triacylglycerols using ultraperformance supercritical fluid chromatography and quadrupole time-of-flight mass spectrometry:Comparison of human milk,infant formula,other mammalian milk,and plant oil[J].Journal of Agricultural and Food Chemistry,2021,69(32):8991-9003.
[3] Amores G,Virto M.Total and free fatty acids analysis in milk and dairy fat[J].Separations,2019,6(1):14.
[4] Dewettinck K,Rombaut R,Thienpont N,et al.Nutritional and technological aspects of milk fat globule membrane material[J].International Dairy Journal,2008,18(5):436-457.
[5] Hu T,Zhang J L.Mass-spectrometry-based lipidomics[J].Journal of Separation Science,2018,41(1):1426-1435.
[6] Andreas N J,Kampmann B,Le-Doare K M.Human breast milk:A review on its composition and bioactivity[J].Early Human Development,2015,91(11):629-635.
[7] Wang M, Wang C,Rowland H H,et al.Novel advances in shotgun lipidomics for biology and medicine[J].Progress in Lipid Research,2016,61(1):83-108.
[8] Liu H,Guo X,Zhao Q,et al.Lipidomics analysis for identifying the geographical origin and lactation stage of goat milk[J].Food Chemistry,2020,309(C):125-131.
[9] Li M,Li Q,Song W,et al.Discovery of lipid biomarkers between bovine colostrum and milk using UHPLC-Q-TOF-MS lipidomics[J].International Dairy Journal,2021,120(1):091-105.
[10] Li Y,Liu B,Jiang L,et al.Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions:A fluorescence analysis[J].Food Hydrocolloids,2019,87(1),814-829.
[11] Zhang X,Liu L,Wang L,et al.Comparative lipidomics analysis of human milk and infant formulas using UHPLC-Q-TOF-MS[J].Journal of Agricultural and Food Chemistry,2021,69(3):254-256.
[12] Li M,Li Q,Kang S,et al.Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics[J].Food Research International,2020,136(1):109-115.
[13] Fougère H,Delavaud C,Faouder P L,et al.Triacylglycerols and polar lipids in cow and goat milk are differentially affected by various lipid supplemented diets[J].European Journal of Lipid Science and Technology,2021,06(1):123-133.
[14] Liu Z,Rochfort S,Cocks B.Milk lipidomics:What we know and what we don't[J].Progress in Lipid Research,2018,71(1),70-85.
[15] Li Q,Zhao Y,Zhu D,et al.Lipidomics profiling of goat milk,soymilk and bovine milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry[J].Food Chemistry,2017,224(2),302-309.
[16] Zhang Y,Zheng Z,Liu C,et al.Lipid profiling and microstructure characteristics of goat milk fat from different stages of lactation[J].Journal of Agricultural and Food Chemistry,2020,68(27):7204-7213.
[17] Wang S,Liu Z,Song Y,et al.Characterization and comparison of lipids from human and ewe colostrum based on lipidomics analysis[J].Food Chemistry,2023,400(5):133998-133999.
[18] Yao Y,Zhao G,Xiang J,et al.Lipid composition and structural characteristics of bovine,caprine and human milk fat globules[J].International Dairy Journal,2016,56(1),64-73.
[1] 侯艳梅, 吴桐, 谢奎詹, 智钧, 陈瑶, 吴红, 刘晓红. 组学技术在山羊乳研究中的应用[J]. 中国乳业, 2019, 0(8): 139-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!