中国乳业 ›› 2025, Vol. 0 ›› Issue (10): 101-108.doi: 10.12377/1671-4393.25.10.16

• 乳品加工 • 上一篇    下一篇

宏基因组测序技术评估藏灵菇微生物组成与益生功能的研究与应用

于志伟1, 李笨2, 周美玲3, 杨紫琦2, 林广宇4, 于晋1,3,*   

  1. 1 那曲市人民医院,西藏那曲 852000;
    2 锦州医科大学医疗学院,辽宁锦州 121000;
    3 锦州医科大学附属口腔医院,辽宁锦州 121000;
    4 辽宁省农业发展中心,辽宁沈阳 110000
  • 出版日期:2025-10-25 发布日期:2025-11-14
  • 通讯作者: *于 晋(1985-),男,辽宁锦州人,硕士,副主任医师,研究方向为口腔颌面外科和口腔修复学。
  • 作者简介:于志伟(1986-),男,山东威海人,本科,主治医师,研究方向为临床微生物;李 笨(1993-),男,辽宁葫芦岛人,满族,硕士,助教,研究方向为病原微生物与免疫;周美玲(1986-),女,辽宁锦州人,硕士,主治医师,研究方向为口腔内科学;杨紫琦(2005-),女,辽宁铁岭人,在读本科,研究方向为口腔医学;林广宇(1979-),男,辽宁沈阳人,硕士,中级畜牧师,研究方向为病原微生物学。
  • 基金资助:
    西藏自治区自然科学基金组团式援藏医学项目[XZZR202402083(W)]; 辽宁省教育厅基本项目(JYTMS20230677)

Research and Application of Metagenomic Sequencing Technology in Evaluating the Microbial Composition and Probiotic Functions of Tibetan Kefir Grains

YU Zhiwei1, LI Ben2, ZHOU Meiling3, YANG Ziqi2, LIN Guangyu4, YU Jin1,3,*   

  1. 1 Naqu People's Hospital,Naqu Tibet 852000;
    2 Medical College of Jinzhou Medical University,Jinzhou Liaoning 121000;
    3 Affiliated Stomatological Hospital of Jinzhou Medical University, Jinzhou Liaoning 121000;
    4 Liaoning Agricultural Development Center,Shenyang Liaoning 110000
  • Online:2025-10-25 Published:2025-11-14

摘要: [目的]藏灵菇(TKGs)作为我国西藏地区一种历史悠久的传统发酵制品,在民间饮食文化中占据独特地位。本研究旨在利用宏基因组测序技术,剖析TKGs的微生物组成与益生功能,为其开发利用提供依据。[方法]本研究从西藏林芝采集TKGs样本,经培养、DNA提取后,借助高通量测序构建宏基因组文库,并运用多种数据库开展生物信息学分析。[结果]本次测序数据质量高、组装效果佳。微生物以细菌为主,乳杆菌类群占主导,其中产马乳酒乳杆菌(Lactobacillus kefiranofaciens)占比54%,还有少量病毒、真核生物和古菌。病毒中乳杆菌噬菌体Llun1(Lactobacillus phage Llun1)占5%,真菌中小哈萨克斯坦酵母(Kazachstania exigua)占68%。功能基因注释表明,该菌株代谢活跃,如碳水化合物代谢通路基因为1477;环境信息处理能力强,膜转运和信号转导通路基因分别为934和503。同时,其细菌感染性疾病相关基因为12占比较低,但有一定抗微生物药物耐药性基因为265。CAZy和eggNOG数据库注释发现,该菌株碳水化合物代谢能力突出,整体代谢活跃。[结论]宏基因组测序揭示了TKGs的微生物组成与益生功能,本研究不仅强调了TKGs作为一种天然益生菌源的潜在价值,也为开发利用其益生功能提供科学依据。

关键词: 藏灵菇(TKGs), 宏基因组测序, 微生物组成, 益生功能

Abstract: [Objective]Tibetan kefir grains(TKGs),as a traditional fermented product with a long history in Tibet,China,hold a unique position in folk dietary culture.The aim of this study was to utilize metagenomic sequencing technology to analyze the microbial composition and probiotic functions of TKGs,providing a basis for their development and utilization.[Method]TKGs samples were collected from Linzhi,Tibet. After cultivation and DNA extraction,a metagenomic library was constructed by high-throughput sequencing,and bioinformatics analyses were performed using multiple databases.[Result]The sequencing data had high quality and the assembly was successful. Bacteria were the dominant microorganisms in TKGs,with the Lactobacillus group being predominant. Lactobacillus kefiranofaciens accounted for 54% of the total microorganisms,and there were also a small amounts of viruses,eukaryotes and archaea. Lactobacillus phage Llun1 accounted for 5% of the viruses,and Kazachstania exigua accounted for 68% of the fungi. Functional gene annotation revealed that the microbial strains exhibited vigorous metabolic activity,with 1477 genes related to carbohydrate metabolism pathways.The strains also demonstrated strong capabilities in environmental information processing,with 934 genes associated with membrane transport and 503 genes related to signal transduction pathways. While the proportion of genes related to bacterial infectious diseases was relatively low at 12,there were 265 genes associated with antimicrobial drug resistance.Annotations from the CAZy and eggNOG databases revealed that the strain had outstanding carbohydrate metabolism capabilities and overall high metabolic activity.[Conclusion]Metagenomic sequencing had revealed the microbial composition and probiotic functions of TKGs.This study not only emphasized the potential value of TKGs as a natural source of probiotics but also provided a scientific basis for the development and utilization of their probiotic functions.

Key words: Tibetan kefir grains(TKGs), metagenomic sequencing, microbial composition, probiotic function

[1] Sun Y,Zhao H,Chang M,et al.Prophylactic effects of Tibetan goat kefir on depression-like behaviors in chronic unpredictable stress model through the gut-brain axis[J].Journal of the Science of Food and Agriculture,2025,105(1):266-75.
[2] Aziz T,Xingyu H,Sarwar A,et al.Assessing the probiotic potential,antioxidant,and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan kefir[J].Frontiers in microbiology,2023,9(14):1265188.
[3] Zhang J,Zhao X,Jiang Y,et al.Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir[J].Journal of Dairy Science,2017,100(8):6025-41.
[4] Chen K,Yang J,Guo X,et al.Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains:A metagenomic analysis[J].Food Microbiol,2024,119:104454.
[5] Aydin S,Erözden A A,Tavşanlı,N,et al.Anthocyanin addition to kefir:Metagenomic analysis of microbial community structure[J].Current microbiology,2022,79(11):327.
[6] Baars T,Van Esch B,Van Ooijen L,et al.Raw milk kefir:Microbiota,bioactive peptides,and immune modulation[J].Food & Function,2023,14(3):1648-1661.
[7] Liu S,Lu S Y,Qureshi N,et al.Antibacterial property and metagenomic analysis of milk kefir[J].Probiotics and Antimicrobial Proteins,2022,14(6):1170-1183.
[8] Zhao J,Wang Y,Wang J,et al.Lactobacillus kefiranofaciens ZW18 from Kefir enhances the anti-tumor effect of anti-programmed cell death 1(PD-1) immunotherapy by modulating the gut microbiota[J].Food & Function,2022,13(19):10023-10033.
[9] Xing Z,Tang W,Yang Y,et al.Colonization and gut flora modulation of Lactobacillus kefiranofaciens ZW3 in the intestinal tract of mice[J].Probiotics and Antimicrobial Proteins,2018,10(2):374-382.
[10] Peluzio M C G,Dias M M E,Martinez J A,et al.Kefir and intestinal microbiota modulation:Implications in human health[J].Frontiers in nutrition(Lausanne),2021,8:638740.
[11] Mahony J,Mcdonnell B,Casey E,et al.Phage-host interactions of cheese-making lactic acid bacteria[J].Annu Rev Food Sci Technol,2016,7(1):267-285.
[12] Zeng X,Wang Y,Jia H,et al.Metagenomic analysis of microflora structure and functional capacity in probiotic Tibetan kefir grains[J].Food Research International,2022,151:110849.
[13] Gao J,Mao K,Wang X,et al.Tibet kefir milk regulated metabolic changes induced by high-fat diet via amino acids,bile acids,and equol metabolism in human-microbiota-associated rats[J]. Journal of Agriculturaland Food Chemistry,2021,69(23):6720-6732.
[14] Mantegazza G,Dalla V A,Licata A,et al.Use of kefir-derived lactic acid bacteria for the preparation of a fermented soy drink with increased estrogenic activity[J].Food research international,2023,164:112322.
[15] Blasche S,Kim Y,Mars R A T,et al.Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community[J].Nature microbiology,2021,6(2):196-208.
[16] Rosa D D,Dias M M S,Grzeskowiak L M,et al.Milk kefir:Nutritional,microbiological and health benefits[J].Nutrition Research Reviews,2017,30(1):82-96.
[17] Dimidi E,Cox S,Rossi M,et al.Fermented foods:Definitions and characteristics,impact on the gut microbiota and effects on gastrointestinal health and disease[J].Nutrients,2019,11(8):1806.
[18] Mendes E,Casaro M,Fukumori C,et al.Preventive oral kefir supplementation protects mice from ovariectomy-induced exacerbated allergic airway inflammation[J].Benef Microbes,2021,12(2):187-197.
[19] Al-Mohammadi A R,Ibrahim R A,Moustafa A H,et al.Chemical constitution and antimicrobial activity of Kefir fermented beverage[J].Molecules(Basel,Switzerland),2021,26(9):2635.
[20] Cui Y,Jing C,Yue Y,et al.Kefir ameliorates alcohol-induced liver injury through modulating gut microbiota and fecal bile acid profile in mice[J].Molecular nutrition & food research,2024,68(1):e2300301-n/a.
[21] Alves E,Ntungwe E N,Gregorio J,et al.Characterization of Kefir produced in household conditions:Physicochemical and nutritional profile,and storage stability[J].Foods,2021,10(5):1057.
[22] Mcgovern C J,González-Orozco B D,Jiménez-Flores R.Evaluation of kefir grain microbiota,grain viability,and bioactivity from fermenting dairy processing by-products[J].Journal of Dairy Science,2024,107(7):4259-4276.
[23] Santini G,Bonazza F,Pucciarelli S,et al.Proteomic characterization of kefir milk by two-dimensional electrophoresis followed by mass spectrometry[J].Journal of Mass Spectrometry,2020,55(11):e4635.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!