中国乳业 ›› 2021, Vol. 0 ›› Issue (11): 92-99.doi: 10.12377/1671-4393.21.11.13

• 技术研究 • 上一篇    下一篇

过二硫酸盐提升奶牛养殖废水厌氧消化产甲烷性能研究

王婷婷, 唐鑫, 孙英*   

  1. 中国农业大学资源与环境学院,北京 100193
  • 出版日期:2021-11-25 发布日期:2021-12-21
  • 通讯作者: *孙 英(1967-),女,山西太原人,博士,教授,研究方向为环境污染防治与修复,E-mail:sunying@cau.edu.cn。
  • 作者简介:王婷婷(1998-),女,安徽蚌埠人,硕士,研究方向为环境污染防治与修复,E-mail:wtt_dlut@126.com;唐 鑫(1996-),男,四川南充人,硕士,研究方向为奶牛养殖及牧场管理。
  • 基金资助:
    重点研发计划项目(2016YFD0501404)

Study on the Improvement Effect of Perdisulfate on Anaerobic Methane Production of Dairy Wastewater Methane Production

WANG Tingting, TANG Xin, SUN Ying*   

  1. College of Resources and Environment, China Agricultural University, Beijing 100193
  • Online:2021-11-25 Published:2021-12-21

摘要: 厌氧消化是实现奶牛场养殖废水资源化、无害化的常见处理方法,而传统厌氧消化的水解效率低,是影响厌氧消化推广应用的主要限制因素。结果表明,通过投加适量过二硫酸盐(Perdisulfate, PDS)能够有效提升奶牛养殖废水产甲烷效果与沼液的植物可利用性。在PDS投加量3.4 g/L时,产甲烷量提升最为明显,相较于未投加PDS的对照处理组,甲烷产量提升了130.00%。进一步对PDS提升厌氧消化产甲烷机理进行研究,结果表明,PDS投加能有效提高挥发性脂肪酸(Volatile Fatty Acids,VFAs)产量,其中乙酸产量的提高有利于乙酸型产甲烷过程。对试验样品的高通量测序证实了PDS处理提高了乙酸型产甲烷菌的相对丰度,PDS促进乙酸型产甲烷过程是提高甲烷产量的重要原因。

关键词: 奶牛养殖废水, 厌氧消化, 过二硫酸盐(Perdisulfate, PDS), 甲烷产量, 微生物

Abstract: Anaerobic digestion is an effective method for energy recover and harmless treatment of dairy wastewater. It is the low methane production that is limiting the popularization and application of anaerobic digestion. Experimental results showed that appropriate dosage of perdisulfate (PDS) could effectively improve the methane production of dairy wastewater. When PDS/TSS was about 0.1, the methane production increased most significantly. Compared with the control group(CK), the methane production increased by 130.00%. The results indicated that PDS can effectively improve the yield of volatile fatty acids (VFAs). The increase of acetic acid yield is conducive to the acetic acid type methanogenesis process. High throughput sequencing confirmed that PDS increased the relative abundance of acetic acid methanogens. Promoting the process of acetic acid methanogenesis may be an effective way to improve methane production.

Key words: dairy wastewater, anaerobic digestion, perdisulfate, methane production, microbial

[1] 贺延龄. 废水的厌氧生物处理[M]. 北京:中国轻工业出版社,1998.
[2] Liu Y, Ma S, Huang L, et al.Two-step heating mode with the same energy consumption as conventional heating for enhancing methane production during anaerobic digestion of swine wastewater[J]. Journal of Environmental Management, 2018, 2018, 209(1):301-307.
[3] 徐俊,朱雯喆,谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展,2019,38(9):4227-4237.
[4] 王亭亭,赵智强,张耀斌. 碱预处理耦合零价铁强化含油污泥厌氧消化[J]. 化工进展,2021,40(1):534-541.
[5] 蔡美辰,戚丹丹,刘林林,等. 碱预处理提高剩余污泥厌氧产甲烷性能研究[J]. 中国沼气,2020,38(4):3-8.
[6] 刘东方,王爱娟,王伟,等. 超声与次氯酸钠耦合预处理剩余污泥的中温厌氧消化效果[J]. 环境工程学报,2012,6(5):1704-1708.
[7] 张文杰,李琦华,柴艳. 秸秆处理方法的研究进展[J]. 中国畜牧兽医,2011,38(7):30-33.
[8] Nkemka V N, Gilroyed B, Yanke J, et al.Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail[J]. Bioresource Technology, 2015,185: 79-88.
[9] 李建安,陈乐,左然然,等. 生物强化技术在生物质沼气制备过程中的应用及研究进展[J]. 微生物学通报,2018,45(7):1588-1596.
[10] 邱春生,杜广春,骆尚廉,等. 预处理方式对剩余污泥水解及厌氧产甲烷性能的影响[J]. 环境工程,2016,34(3):133-136.
[11] 张毅,孔晓英,孙永明,等. 大型海藻厌氧发酵特性研究[J]. 中国沼气,2016,34(3):3-8.
[12] 王海东,张文存,王丽莉,等. 污泥厌氧消化预处理技术综述[J]. 应用化工,2021,50(7):1973-1977.
[13] 曾鑫,呼世斌,屈广周,等. 臭氧氧化处理养猪场厌氧沼液[J]. 环境工程学报,2015,9(7):3332-3338.
[14] 毕培,宋秀兰,刘美琴,等. 过硫酸钾对剩余污泥厌氧发酵过程的影响[J]. 工业水处理,2018,38(10):58-62.
[15] 唐海,沙俊鹏,欧阳龙,等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报,2015,66(2):785-792.
[16] 夏雪芬,苏鸿洋,雒满意. 复合式厌氧反应器处理生活污水运行特性研究[J]. 四川环境,2005(2):11-14.
[17] 路苹,于同泉,王淑英,等. 蛋白质测定方法评价[J]. 北京农学院学报,2006,21(2):65-69.
[18] 胡居吾,范青生,肖小年. 粗多糖测定方法的研究[J]. 江西食品工业,2005,(1):16-18.
[19] 胡家元,李家明. 气相色谱法快速测定白酒与发酵液中的低沸点有机酸[J]. 色谱,1993(2):87-89.
[20] 李晶宇,张影微,李文哲,等. 气相色谱法测定沼气气体成分及含量的研究[J]. 农机化研究,2015,37(6):255-257.
[21] Tiquia S M, Tam N F Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge[J]. Bioresource Technology, 1998, 65(1-2): 43-49.
[22] Raposo F, Fernández-Cegrí V, De la Rubia M A, et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(8):1088-1098.
[23] Luo J, Zhang Q, Wu L, et al.Improving anaerobic fermentation of waste activated sludge using iron activated persulfate treatment[J]. Bioresource Technology, 2018, 268: 68-76.
[24] Wang R, Lv N, Li C, et al.Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches[J]. Water Research, 2021,193(9):116896. doi:10.1016/j.watres.2021.116896
[25] Yue L, Cheng J, Hua J, et al.Improving fermentative methane production of glycerol trioleate and food waste pretreated with ozone through two-stage dark hydrogen fermentation and anaerobic digestion[J]. Energy Conversion and Management, 2020, 203(Jan.): 112221-112225. doi:10.1016/j.enconman.2019.112225
[26] Song K, Li Z, Zhou X, et al.Improving methane production from algal sludge anaerobic fermentation by peroxydisulfate (PDS) pretreatment[J]. Science of The Total Environment, 2021, 794(11): 148710. doi:10.1016/j.scitotenv.2021.148710
[27] Ko H J, Kim K Y, Kim H T, et al.Umeda M. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure[J]. Waste Management(New York, N.Y.), 2008, 28(5): 813-820.
[28] 王韩纳. 过硫酸盐的可见光活化及其对细菌的杀灭机理研究: [D]. 广州:广东工业大学,2019.
[29] Jang H M, Choi Y, Kan E.Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure[J]. Bioresource Technology, 2018, 250: 927-931.
[30] Wang Y, Yuan T, Zhang Z, et al.Improved lignocellulose degradation prior to semi-dry anaerobic digestion of dairy manure via potassium permanganate treatment[J]. Bioresource Technology Reports, 2020, 11(11): 100462. doi: 10.1016/j.biteb.2020.100462
[31] 杨智满,郭荣波,许晓晖,等. 厌氧消化污泥预处理对提油后微藻渣产氢的影响[J]. 可再生能源,2010,28(3):48-52,58.
[32] Chen X, Tang R, Wang Y, et al.Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater[J]. Bioresource Technology,2021,320:124356. doi: 10.1016/j.biortech.2020.124356
[33] Kim J R, Karthikeyan K G.Effects of severe pretreatment conditions and lignocellulose-derived furan byproducts on anaerobic digestion of dairy manure[J]. Bioresource Technology, 2021,340:125632. doi: 10.1016/j.biortech.2021.125632
[1] 沈义媛, 童津津, 熊本海, 蒋林树. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, 0(8): 68-75.
[2] 吴思敏, 严家俊, 黄钟标. 微生物法测定婴幼儿配方乳粉中叶酸含量不确定度评估[J]. 中国乳业, 2021, 0(7): 91-97.
[3] 苏妙仪, 严家俊, 张娟. 微生物法检测乳粉中叶酸的优化研究[J]. 中国乳业, 2021, 0(2): 81-85.
[4] 杨红男, 张驭舟, 熊炜, 邓良伟. 牛粪厌氧消化效率提升技术研究进展[J]. 中国乳业, 2021, 0(11): 56-64.
[5] 王格, 杨萌, 杨明月, 鲁琳. 单载体吸附微生物的研究[J]. 中国乳业, 2021, 0(11): 112-117.
[6] 武光宇, 杨萌, 杨明月, 鲁琳. 利用干牛粪制备复合载体吸附微生物的研究[J]. 中国乳业, 2021, 0(11): 118-123.
[7] 郭宁宁, 张学炜, 周娟, 田雨佳. 酸化乳饲喂哺乳犊牛的研究进展[J]. 中国乳业, 2021, 0(10): 46-49.
[8] 吴志东, 高安平, 任彩霞, 董利川. 非热杀菌技术在乳制品加工中的应用研究进展[J]. 中国乳业, 2021, 0(1): 53-54.
[9] 李四化, 潘丽娜, 蒋怡乐, 杨质彬, 赵涛, 陈琴, 戴智勇, 康文丽. 人乳生物化学组成及其特性分析[J]. 中国乳业, 2019, 0(4): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!