中国乳业 ›› 2025, Vol. 0 ›› Issue (11): 7-14.doi: 10.12377/1671-4393.25.11.02

• 优质乳工程专题 • 上一篇    下一篇

不同热处理对牛乳游离单糖含量的影响

齐英杰1,4, 肖然2,3, 杜爽2,3, 张红艳5, 张养东1,4, 郑楠1,4, 赵艳坤5, 王加启1,4, 牛天娇2,3,*   

  1. 1 中国农业科学院北京畜牧兽医研究所,农业农村部奶及奶制品质量安全控制重点实验室,北京 100193;
    2 蒙牛鲜乳制品(天津)有限公司,天津 301700;
    3 内蒙古蒙牛乳业(集团)股份有限公司,北京 011500;
    4 国家市场监督管理总局重点实验室(乳品质量数智监控技术),北京 100193;
    5 新疆维吾尔自治区农业科学院农业质量标准与检测技术研究所, 新疆乌鲁木齐 830091
  • 发布日期:2025-12-22
  • 通讯作者: *牛天娇(1978-),女,黑龙江齐齐哈尔人,博士,正高级工程师,研究方向为乳制品加工。
  • 作者简介:齐英杰(1999-),男,内蒙古赤峰人,蒙古族,硕士,研究方向为牛奶品质调控;肖 然(1988-),女,黑龙江哈尔滨人,博士,研究方向为乳制品加工;杜 爽(1993-),女,湖北宜昌人,硕士,中级工程师,研究方向为乳制品加工;张红艳(1978-),女,山东东明人,博士,正高级实验师,研究方向为乳品质量与安全;张养东(1982-),男,山东济宁人,博士,研究员,研究方向为牛奶品质调控;郑 楠(1980-),女,内蒙古包头人,博士,研究员,研究方向为奶产品质量安全风险评估与营养功能评价;赵艳坤(1990-),女,河南周口人,博士,研究员,研究方向为乳品质量与安全;王加启(1967-),男,安徽宿州人,博士,研究员,研究方向为奶牛营养与牛奶质量安全。
  • 基金资助:
    国家重点研发计划(2022YFD1301004); 中国农业科学院科技创新工程(ASTIP-IAS12); 国家奶牛产业技术体系(CARS-36); 新疆维吾尔自治区重点研发计划项目(2024B04005)

Effects of Different Heat Treatments on the Content of Free Monosaccharides in Bovine Milk

QI Yingjie1,4, XIAO Ran2,3, DU Shuang2,3, ZHANG Hongyan5, ZHANG Yangdong1,4, ZHENG Nan1,4, ZHAO Yankun5, WANG Jiaqi1,4, NIU Tianjiao2,3,*   

  1. 1 Institute of Animal Sciences,Chinese Academy of Agricultural Sciences; Key Laboratory of Quality and Safety Control for Milk and Dairy Products,Ministry of Agriculture and Rural Affairs,Beijing 100193;
    2 Mengniu Fresh Dairy Products (Tianjin) Co.,Ltd.,Tianjin 301700;
    3 Inner Mongolia Mengniu Dairy (Group) Co.,Ltd.,Beijing 011500;
    4 Key Laboratory of Dairy Quality and Digital Monitoring Technology,State Administration for Market Regulation,Beijing 100193;
    5 Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences,Urumqi Xinjiang 830091;
  • Published:2025-12-22

摘要: [目的]本研究旨在评估直接加热式与间接加热式杀菌工艺对牛乳中游离单糖含量及组成的动态影响,以弥补现有研究在两种加热方式比较方面的不足。[方法]采用液相色谱-质谱联用(LC-MS)技术定量检测阿拉伯糖、半乳糖、甘露糖、核糖、木糖、葡萄糖和岩藻糖的含量,并通过单因素方差分析(ANOVA)、Tukey事后检验、主成分分析(PCA)及层次聚类进行统计学和多变量解析。[结果]热处理显著改变了单糖分布,半乳糖、甘露糖、核糖及岩藻糖含量随温度升高呈剂量依赖性降低(均p< 0.01);葡萄糖在75 ℃时显著增加75.0%[(37 182.40±1 063.18) ng/mL],在122 ℃和130 ℃时分别下降8.2%和7.3%。层次聚类分析显示,130 ℃组与75 ℃组相似性较高,而与122 ℃组分离显著,表明短时高温可抑制美拉德反应初期产物积累并减少热敏感单糖的过度降解。[结论]本研究首次揭示了直接与间接杀菌工艺对生牛乳游离单糖含量的影响,为探讨热加工过程中乳糖降解及单糖转化机制提供了新的实验数据,并为乳制品加工工艺优化提供了科学依据。

关键词: 生牛乳, 直接杀菌工艺, 间接杀菌工艺, 游离单糖, 液相色谱-质谱联用(LC-MS)

Abstract: [Objective] This study aimed to evaluate the dynamic effects of direct and indirect sterilization processes on the content and composition of free monosaccharides in bovine milk,addressing the current research gap in comparing these two heating methods.[Method] The contents of arabinose,galactose,mannose,ribose,xylose,glucose,and fucose were quantitatively analyzed using liquid chromatography-mass spectrometry (LC-MS). Statistical evaluation was performed via one-way ANOVA,Tukey's post-hoc test,principal component analysis (PCA),and hierarchical clustering for multivariate analysis.[Result] Heat treatment significantly altered the monosaccharide profile:the contents of galactose,mannose,ribose,and fucose decreased in a dose-dependent manner with increasing temperature (all p<0.01). Glucose content increased significantly by 75.0% [(37 182.40±1 063.18)ng/mL] at 75 ℃ but decreased by approximately 8.2% and 7.3% at 122 ℃ and 130 ℃,respectively. Hierarchical clustering analysis further confirmed the dominant role of temperature in regulating monosaccharides,showing higher similarity between the 130 ℃ and 75 ℃ groups,while the 122 ℃ group was distinctly separated. This indicates that short-time high-temperature treatment can inhibit the accumulation of early Maillard reaction products and reduce excessive degradation of heat-sensitive monosaccharides.[Conclusion] This study was the first to reveal the effects of direct and indirect sterilization processes on the free monosaccharide content in raw bovine milk. It provided new experimental data for understanding the mechanisms of lactose degradation and monosaccharide transformation during thermal processing and offers a scientific basis for optimizing dairy processing technologies.

Key words: raw bovine milk, direct sterilization process, indirect sterilization process, free monosaccharides, liquid chromatography-mass spectrometry (LC-MS)

[1] Fox P F.Milk:An overview[J]. Milk proteins,2008:1-54.
[2] Oftedal O T.The evolution of milk secretion and its ancient origins[J]. Animal,2012,6(3):355-368.
[3] Renzone G,Arena S,Salzano A M,et al.Proteomic characterization of nonenzymatic modifications induced in bovine milk following thermal treatments[M]. Proteomics in Food Science,2017:241-260.
[4] Newburg D S,Neubauer S H.Carbohydrates in milk[J]. Handbook of milk composition,1995:349-273.
[5] McSweeney P,Fox P. Advanced Dairy Chemistry:Volume 3:Lactose,Water,Salts and Minor Constituents[M]. Cham:Springer Nature,2022.
[6] Englyst K N,Englyst H N.Carbohydrate bioavailability[J]. British Journal of Nutrition,2005,94(1):1-11.
[7] Szilagyi A.Digestion,absorption,metabolism,and physiological effects of lactose[M]. Lactose. Elsevier. 2019:49-111.
[8] Chaturvedi P,Warren C D,Altaye M,et al.Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation[J]. Glycobiology,2001,11(5):365-372.
[9] Ruiz-Moyano S,Totten S M,Garrido D A,et al.Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve[J]. Applied and environmental microbiology,2013,79(19):6040-6049.
[10] Chandel N S.Carbohydrate metabolism[J]. Cold Spring Harbor Perspectives in Biology,2021,13(1):a040568.
[11] Singh P,Gandhi N.Milk preservatives and adulterants:processing,regulatory and safety issues[J]. Food Reviews International,2015,31(3):236-261.
[12] Xu B,Li S,Ding W,et al.From structure to function:A comprehensive overview of polysaccharide roles and applications[J]. Food Frontiers,2025,6(1):15-39.
[13] El Khadem H.Carbohydrate chemistry:monosaccharides and their oligomers[M]. Amsterdam:Elsevier,2012.
[14] Chaudhary S,Jain V P,Jaiswar G.The composition of polysaccharides:monosaccharides and binding,group decorating,polysaccharides chains[M]//Innovation in nano-polysaccharides for eco-sustainability. Elsevier,2022:83-118.
[15] Nuño J C,Sánchez-Valdenebro I,Pérez-Iratxeta C,et al.Network organization of cell metabolism:monosaccharide interconversion[J]. Biochemical Journal,1997,324(1):103-111.
[16] Khowala S,Verma D,Banik S P.BIOMOLECULES:(INTRODUCTION,STRUCTURE & FUNCTION)[J]. Indian Institute of Chemical Biology,2008:3-92.
[17] Chandel N S.Glycolysis[J]. Cold Spring Harbor Perspectives in Biology,2021,13(5):a040535.
[18] Tzia C,Giannou V,Lebesi D,et al.Chemistry and functional properties of carbohydrates and sugars (monosaccharides,disaccharides,and polysaccharides)[J]. Sweeteners. Nutritional aspects,applications,and production technology,2012:11-45.
[19] Neves L N O,de Oliveira M A L. Effects of enzymatic lactose hydrolysis on thermal markers in lactose-free UHT milk[J]. Journal of Food Science and Technology,2020,57(9):3518-3524.
[20] Bai G,Cheng L,Peng L,et al.Effects of ultra‐high‐temperature processes on metabolite changes in milk[J]. Food Science & Nutrition,2023,11(6):3601-3615.
[21] Jensen S,Jansson T,Eggers N,et al.Storage-induced changes in the sensory characteristics and volatiles of conventional and lactose-hydrolyzed UHT processed milk[J]. European Food Research and Technology,2015,240(6):1247-1257.
[1] 袁文焕, 陈静怡, 张天琦, 贾春涛. 生牛乳高体细胞数的成因分析及综合防控策略[J]. 中国乳业, 2025, 0(8): 75-80.
[2] 刘玉茹, 李欣怡, 华晓巍, 张丙辉, 陈晓民, 张可心, 张德喜. 生牛乳中芽孢杆菌形态变化规律及污染影响因素分析[J]. 中国乳业, 2025, 0(3): 84-91.
[3] 孙玉荣, 胡文秀, 李君冉, 任利强, 王海斌, 胡冬梅, 田晓芳. 影响生牛乳冰点的因素分析[J]. 中国乳业, 2025, 0(3): 65-70.
[4] 孙小二, 王路阳, 乔宽, 王艳飞, 梁凤玲, 时长旭, 高永亮. 电子鼻应用于生牛乳检测和感官评价的试验研究[J]. 中国乳业, 2025, 0(10): 94-100.
[5] 乔宽, 王路阳, 王艳飞, 张云鲜, 时长旭. 酶联免疫吸附和胶体金技术对黄曲霉毒素M1检测的结合验证[J]. 中国乳业, 2024, 0(1): 69-73.
[6] 宫春颖, 孙健, 粘靖祺, 王帅. 生牛乳质量影响因素的研究进展[J]. 中国乳业, 2020, 0(6): 68-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!