中国乳业 ›› 2025, Vol. 0 ›› Issue (11): 42-50.doi: 10.12377/1671-4393.25.11.05
陈银阁1, 温凤亮1,2,3, 肖然1,2,3, 张养东1, 郑楠1, 赵艳坤4, 张红艳4, 欧国兵5, 王加启1, 牛天娇1,2,3,*
CHEN Yinge1, WEN Fengliang1,2,3, XIAO Ran1,2,3, ZHANG Yangdong1, ZHENG Nan1, ZHAO Yankun4, ZHANG Hongyan4, OU Guobing5, WANG Jiaqi1, NIU Tianjiao1,2,3,*
摘要: [目的]本文系统研究了不同热处理条件对牛乳风味及美拉德反应程度的影响。[方法]通过设置生乳组、10 种间接式杀菌工艺(包括3 个时间2 s、15 s、30 min与10 个温度63~135 ℃)以及直接式杀菌工艺(130 ℃/0.5 s),结合电子鼻风味分析、糠氨酸和乳果糖含量测定,综合评价热处理强度对乳品品质的作用。[结果]电子鼻可有效区分不同热处理组的风味特征,直接式杀菌工艺在风味上与其他组差异显著,(72~90 ℃)/15 s与(95~122 ℃)/15 s间接杀菌工艺风味差异明显,主要挥发性差异物质为硫化物、芳香成分和氮氧化合物。糠氨酸和乳果糖含量随温度升高而增加,尤其在135 ℃/15 s时急剧上升,反映出强烈热损伤;而直接式杀菌工艺(130 ℃/0.5 s)能有效抑制美拉德反应产物生成,糠氨酸和乳果糖含量分别介于90~95 ℃/15 s和72~80℃/15 s工艺之间。[结论]直接式杀菌工艺在实现灭菌和延长货架期的同时,可显著控制热损伤并保留良好风味,适用于高品质UHT乳生产;低温间接杀菌工艺热负荷低、风味变化小,适用于巴氏乳;中温工艺则适用于延长货架期乳制品。本研究为优化乳品热处理工艺、平衡灭菌效果与风味品质提供了理论依据和技术支持。
| [1] Pereira P C.Milk nutritional composition and its role in human health[J]. Nutrition,2014,30(6):619-627. [2] Haug A,Høstmark A T,Harstad O M.Bovine milk in human nutrition--a review[J]. Lipids in Health and Disease,2007,6:25. [3] Mills S,Ross R P,Hill C,et al.Milk intelligence:Mining milk for bioactive substances associated with human health[J]. International Dairy Journal,2011,21(6):377-401. [4] Politis IChronopoulou R.Milk peptides and immune response in the neonate[J]. Advances in Experimental Medicine and Biology,2008,606:253-269. [5] Fiat A-M,Migliore-Samour D,Jollès P,et al.Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities[J]. Journal of Dairy Science,1993,76(1):301-310. [6] Zimecki M, Kruzel M L.Milk-derived proteins and peptides of potential therapeutic and nutritive value[J]. Journal of Experimental Therapeutics & Oncology,2007,6(2):89-106. [7] González-Chávez S A,Arévalo-Gallegos S,Rascón-Cruz Q. Lactoferrin:structure,function and applications[J]. International Journal of Antimicrobial Agents,2009,33(4):301. [8] Månsson H L.Fatty acids in bovine milk fat[J]. Food and Nutrition Research,2008,52:1-6. [9] Benjamin S, Spener F.Conjugated linoleic acids as functional food:an insight into their health benefits[J]. Nutrition & Metabolism,2009,6:1-36. [10] Gaucheron F.Milk and dairy products:a unique micronutrient combination[J]. Journal of the American College of Nutrition,2011,30(5 Suppl 1):400-409. [11] Su X,Tortorice M,Ryo S,et al.Sensory lexicons and formation pathways of off-aromas in dairy ingredients:A review[J]. Molecules,2020,25(3):1-8. [12] Cadwallader K,Rsingh T.Flavours and off-flavours in milk and dairy products[J]. Advanced Dairy Chemistry,2009,1(1):631-690. [13] Bassette R,Fung D Y,Mantha V R.Off-flavors in milk[J]. Critical Reviews in Food Science and Nutrition,1986,24(1):1-52. [14] Carunchia Whetstine M E,Croissant A E,Drake M A. Characterization of dried whey protein concentrate and isolate flavor[J]. Journal of Dairy Science,2005,88(11):3826-3839. [15] Whetstine M E C, Drake M A. The flavor and flavor stability of skim and whole milk powders[J]. American Chemical Society, 2007,9:217-251. [16] Jo Y,Benoist D M,Barbano D M,et al.Flavor and flavor chemistry differences among milks processed by high-temperature,short-time pasteurization or ultra-pasteurization[J]. Journal of dairy science,2018,101(5):3812-3828. [17] Al-Attabi Z,D’Arcy B R,Deeth H C. Volatile sulfur compounds in pasteurised and UHT milk during storage[J]. Dairy Science & Technology,2014,94(3):241-253. [18] Smith T J,Campbell R E,Jo Y,et al.Flavor and stability of milk proteins[J]. Journal of Dairy Science,2016,99(6):4325-4346. [19] Adhikari A,KSingal O P.Effect of dissolved oxigen content on the flavour profile of UHT milk during storage[J]. The International Journal of Dairy Technology,1992,47:6. [20] 全国畜牧业标准化技术委员会. 巴氏杀菌乳和UHT灭菌乳中复原乳的鉴定:NY/T 939-2016[S]. [21] Donato L,Guyomarc’h F,Amiot S,et al.Formation of whey protein/κ-casein complexes in heated milk:Preferential reaction of whey protein with κ-casein in the casein micelles[J]. International Dairy Journal,2007,17(10):1161-1167. [22] Van Boekel M A J S. Effect of heating on Maillard reactions in milk[J]. Food Chemistry,1998,62(4):403-414. [23] Wang Y,Guo M,Wu P,et al.Size-dependent composition and in-situ structure analysis of the milk fat globule membrane in buffalo milk[J]. Food Chemistry,2025,464:141766. [24] Al-Attabi Z,D’Arcy B R,Deeth H C. Volatile sulphur compounds in UHT milk[J]. Critical Reviews in Food Science and Nutrition,2009,49(1):28-47. [25] Rudy D W,Nieuwenhuijse H.Kinetic modelling of the formation of sulphur-containing flavour components during heat-treatment of milk[J]. International Dairy Journal,2008,18(5):539-547. [26] Lynch J M,Lock A L,Dwyer D A,et al.Flavor and stability of pasteurized milk with elevated levels of conjugated linoleic acid and vaccenic acid[J]. Journal of Dairy Science,2005,88(2):489-498. [27] Czerwonka M,Pietrzak S R,Bobrowska K B.Evaluation of 5-hydroxymethylfurfural content in market milk products[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment,2020,37(7):1135-1144. [28] Baptista J A B,Carvalho R C B. Indirect determination of Amadori compounds in milk-based products by HPLC/ELSD/UV as an index of protein deterioration[J]. Food Research International,2004,37(8):739-747. [29] Boitz L I,Mayer H K.Evaluation of furosine,lactulose and acid-soluble β-lactoglobulin as time temperature integrators for whipping cream samples at retail in Austria[J]. International Dairy Journal,2015,50:24-31. [30] Guo Y,Li H,Zhao X,et al.Changes in Maillard reaction products,volatile substances and active proteins of goat milk under different heat treatments[J]. International Dairy Journal,2023,146:105714. [31] Elliott A J,Datta N,Amenu B,et al.Heat-induced and other chemical changes in commercial UHT milks[J]. Journal Of Dairy Research,2005,72(4):442-446. [32] Neves L N D O,Marques R,da Silva P H F,et al. Lactulose determination in UHT milk by CZE-UV with indirect detection[J]. Food Chemistry,2018,258:337-342. |
| [1] | 刘杰, 彭翔, 李梅, 刘超, 李利芬. 近红外光谱技术检测巴氏杀菌乳中糠氨酸含量的研究与应用[J]. 中国乳业, 2025, 0(9): 118-122. |
| [2] | 刘超, 许英秋, 刘杰, 彭翔, 林立民, 李利芬. 淀粉含量对保健食品风味发酵乳中蔗糖及总糖检测的影响研究[J]. 中国乳业, 2025, 0(9): 151-156. |
| [3] | 陈菲, 张佳雪, 尉磊, 张瑞瑞, 美合日阿依·艾买提, 钱浩, 孙芳芳. 不同类型凝乳酶对Halloumi奶酪品质影响的研究[J]. 中国乳业, 2025, 0(8): 102-111. |
| [4] | 张婧, 朱孔迪, 刘传铭, 刘长振, 王鹏杰, 黄家强. 一种快速精准检测各种乳品中牛乳铁蛋白含量的广适性ELISA方法[J]. 中国乳业, 2025, 0(3): 91-99. |
| [5] | 张海娇, 邹旸, 张璐, 张嘉齐, 杨洋. 酶解燕麦粉中膳食纤维在乳制品中的工艺优化研究[J]. 中国乳业, 2025, 0(2): 105-109. |
| [6] | 孙小二, 王路阳, 乔宽, 王艳飞, 梁凤玲, 时长旭, 高永亮. 电子鼻应用于生牛乳检测和感官评价的试验研究[J]. 中国乳业, 2025, 0(10): 94-100. |
| [7] | 段小芳, 陈立韬, 何湘丽, 刘洋, 尹亚军. 加速试验期内不同乳基幼儿配方奶粉的质量研究[J]. 中国乳业, 2025, 0(10): 116-122. |
| [8] | 陈维维, 尤宏, 孙中校, 安美玲, 杨迎春, 李福赞, 罗晓红. 不同储存温度对超巴奶、UHT奶中乳果糖含量的影响[J]. 中国乳业, 2024, 0(12): 113-116. |
| [9] | 蒋晓航, 别雨桐, 茹佳怡, 王顺余, 李博胜, 苏忠军, 王博颖, 吴淑清. 油莎豆藜麦颗粒奶的工艺研究及气味分析[J]. 中国乳业, 2024, 0(12): 124-131. |
| [10] | 贾若微, 胡潇, 张忆梅. 甘草风味发酵乳的研制[J]. 中国乳业, 2023, 0(4): 101-105. |
| [11] | 田桂艳, 李慧, 白晓玲, 曹文燕, 王丹慧, 马建军, 刘伯扬, 李海军, 逯刚. 中红外光谱技术检测灭菌乳中糠氨酸的研究[J]. 中国乳业, 2023, 0(4): 82-86. |
| [12] | 邹旸, 张海娇, 张璐, 张嘉齐, 杨洋. 基于开菲尔混菌体系的酒酿酸奶风味研究[J]. 中国乳业, 2023, 0(11): 106-111. |
| [13] | 徐大江, 马占峰, 赵丽娟, 李波. 乳制品中糠氨酸和乳铁蛋白常用检测方法综述[J]. 中国乳业, 2023, 0(1): 52-57. |
| [14] | 邓凯, 陈文璐, 何相伟, 李原野, 刘妍妍, 孙志刚, 丛文广. 俄罗斯风味红枣枸杞酸奶的研制[J]. 中国乳业, 2022, 0(9): 88-94. |
| [15] | 何瑛, 曹学思, 纪坤发, 杨爱君, 陈欣, 陈春裕. 高效液相色谱法测定巴氏杀菌乳中糠氨酸含量的不确定度评定[J]. 中国乳业, 2022, 0(9): 71-80. |
|
||