中国乳业 ›› 2024, Vol. 0 ›› Issue (11): 3-14.doi: 10.12377/1671-4393.24.11.01

• 智慧养殖专题 • 上一篇    下一篇

反刍动物温室气体排放检测方法综述

纪昕彤, 郭凯军*   

  1. 北京农学院,北京 100096
  • 出版日期:2024-11-25 发布日期:2024-12-10
  • 通讯作者: *郭凯军(1973-),男,河南西平人,博士,教授,硕士生导师,研究方向为智慧牧业科学与工程。
  • 作者简介:纪昕彤(2000-),女,北京人,本科,研究方向为智慧牧业科学与工程。
  • 基金资助:
    北京市家畜创新团队项目(BAIC05-2024)

A Review of Greenhouse Gasemission Detection Methods for Ruminant Animals

JI Xintong, GUO Kaijun*   

  1. Beijing University of Agriculture, Beijing 100096
  • Online:2024-11-25 Published:2024-12-10

摘要: 温室气体排放智能检测方法的研究是当前环境和气候领域的热点之一。直到2023年,畜牧业产生的温室气体占全球总排放量的14.5%以上,其中反刍动物肠道发酵是温室气体最主要的来源。随着全球气候变暖问题日益严重,如何准确、高效地检测温室气体排放成为关键。目前,温室气体排放指数的测定依赖于专业的仪器设备,如呼吸室气相色谱仪、甲烷激光探测器等,这些设备运用的原理、适用环境以及准确性各不相同。本文首先介绍了反刍动物产生温室气体的机理及危害,重点对检测方法原理、适用环境和技术等进行比较分析,总结现有方法发现,当前检测方法存在使用环境有限、精准度不高、价格过高等缺陷。针对反刍动物温室气体排放检测方法领域现有的挑战进行总结,并对未来进行了展望,以开发出更加高效、便捷及性价比高的温室气体检测设备。

关键词: 反刍动物, 温室气体, 检测方法

Abstract: Research on intelligent methods for detecting greenhouse gas emissions is currently a focal point in environmental and climate sciences. As of 2023,emissions from livestock contribute more than 14.5% to global total emissions,predominantly sourced from enteric fermentation in ruminant animals. With escalating global climate concerns,the precise and efficient detection of these emissions is critical. Presently,greenhouse gas emission indices rely on specialized instruments such as respiratory chamber gas analyzers and methane laser detectors,each varying in principle,applicability,and accuracy. This paper provided an overview of the mechanisms and impacts of greenhouse gas production by ruminant animals, emphasizing a comparative analysis of detection methods including principles, applicability, and technological considerations. Evaluation of current methods reveals limitations such as environmental constraints,low precision,and high costs. Summarizing challenges in ruminant greenhouse gas emission detection methods,this paper offered insights into future directions aimed at developing more efficient, accessible and cost-effective detection technologies.

Key words: ruminant animal, greenhouse gas, detection method

[1] 叶岩, 祝天宇, 吴泽全,等. 反刍动物甲烷排量监测技术应用研究进展[J].农业机械学报,2022,53(S01): 277-292.
[2] Shenyi G,Zijian Q,Yongyong Z,et al.Spatial-temporal characteristics and trend prediction of carbon emissions from husbandry in China[J]. Journal of Agro-Environment Science,2023,42(3): 10.
[3] Hristov A N,Oh J,Lee C,et al.Mitigation of greenhouse gas emissions in livestock production - A review of technical options for non-CO2 emissions[M].Fao Animal Production & Health Paper,2013.
[4] Yan Y,Tianyu Z,Zequan W,et al.Research Progress on application of methane emission monitoring technology in ruminants[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S01): 277-292.
[5] 刘婧玲,陈艳莹. 数字技术发展,时空动态效应与区域碳排放[J].科学学研究,2023,41(5): 841-853.
[6] 万家豪, 兰元胤. "双碳"背景下碳审计面临的问题及对策[J].现代商贸工业,2023,44(13): 144-146.
[7] 张帆,刁其玉. 畜牧业温室气体排放及其减排研究进展[J].家畜生态学报,2015,36(11): 5.
[8] 石福于,景小平,黄小丹,等. 天然放牧系统反刍动物甲烷排放研究进展[J].中国科学:生命科学,2023,53(7): 916-930.
[9] 陈昱龙, 李锦菲,吴越强,等. 内蒙古21年间家畜甲烷与氧化亚氮排放特征[J].草业科学,2024,41(3):527-538.
[10] 曹珍, 廖新. 家畜胃肠道甲烷减排技术进展[J].中国畜牧兽医文摘,2011,27(5): 1.
[11] Ricke S C.91 Methanogen ecology in the ruminant hindgut[J]. Journal of Animal Science, 2023,101(Supplement_2): 235.
[12] 蓝颖春. 二氧化碳:温室气体"主犯"[J].地球,2013(9): 4.
[13] 胡坤. 反刍动物瘤胃内糖类,蛋白质及脂肪的消化代谢[J].现代畜牧科技,2014,12(1):54.
[14] Della Rosa M M,Waghorn G C,Vibart R E J, A. An assessment of global ruminant methane-emission measurements shows bias relative to contributions of farmed species, populations and among continents[J]. Animal Production Science, 2023, 63(3): 201-212.
[15] Guishi W, Tingdong C, Lei W, et al.Application of digital frequency locking techniques in real-time measurement of methane in atmosphere[J]. Chinese Journal of Lasers,2011, 38(10): 6.
[16] 贺永惠, 王清华, 李杰. 降低反刍动物甲烷排放的研究进展[J].黄牛杂志,2001,5(1):47-50.
[17] Yang L,Xiliang X.Environmental hazards of methane gas emissions from ruminants and response measures[J]. China Dairy Cattle, 2011, 5(14): 3.
[18] A T D G, A C, A F I, et al. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock[J]. Measurement, 2015, 66: 272-279.
[19] Sakita G Z,Lima P D M T,Filho A L A, et al. Treating tropical grass with fibrolytic enzymes from the fungus Trichoderma reesei: Effects on animal performance,digestibility and enteric methane emissions of growing lambs[J]. Animal Feed Science and Technology,2022, 286(1)115253.
[20] Tedeschi L O,Abdalla A L,Álvarez C,et al. Quantification of methane emitted by ruminants: a review of methods[J]. Journal of Animal Science, 2022, 100 (7)skac197.
[21] Guoqiang S,Peng S,Lizhuang H.Review of determination of ruminants produce methane quantitative methods[J]. Heilongjiang Animal Science And veterinary Medicine, 2017, 8: 59-64.
[22] Guangyong Z.Models for predicting rumen methane emission in ruminants[J]. Chinese Journal of Animal Nutrition, 2014, 26(10): 3135-3139.
[23] Hristov A N, Oh J, Giallongo F, et al.The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals[J]. Journal of Visualized Experiments Jove, 2015, 103(1):52904.
[24] Alemu A W, Vyas D, Manafiazar G, et al.Enteric methane emissions from low- and high-residual feed intake beef heifers measured using greenFeed and respiration chamber techniques[J]. Journal of Animal Science, 2017, 95(8): 3727.
[25] Fernández C,Gomis-Tena J,Hernández A, et al.An open-circuit indirect calorimetry head hood system for measuring methane emission and energy metabolism in small ruminants[J]. Animals, 2019, 9(6): 380.
[26] Fazio E,Spadaro S Corsaro C, et al. Metal-oxide based nanomaterials:Synthesis, characterization and their applications in electrical and electrochemical sensors[J]. Sensors, 2021, 21(7): 2494.
[27] Dey,Ananya.Semiconductor metal oxide gas sensors: A review[J]. Materials Science & Engineering, B Solid-State Materials for Advanced Technology, 2018,229(1):206-217.
[28] Zhi-ang L, Yi P, Xin Z, et al. Application of sulfur chemiluminescence gas chromatography in gas analysis[J]. Chemical Research and Application, 2019, 9: 1623-1628.
[29] 严亚博, 林建龙, 许一寒,等. 面向二氧化碳电化学利用的离子传导膜研究进展[J].膜科学与技术,2023,43(6): 191-201.
[30] Brannon E Q, Moseman-Valtierra S M, Rella C W, et al. Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes[J]. Limnology & Oceanography Methods, 2016, 14(7):466-476.
[31] Harvey M J,Sperlich P,Clough T J,et al.Global research alliance N2O chamber methodology guidelines: Recommendations for air sample collection,storage and analysis[J].Journal of Environmental Quality,2020,49(5):1110-1125.
[32] 王惟惟, 仲崇亮, 米见对,等. 采用红外光谱技术检测反刍动物甲烷排放[J].动物营养学报,2016,28(5): 8.
[33] Svedberg,Urban,Galle,et al.Assessment of terpene levels and workers’exposure in sawmills with long path FTIR[J]. Applied Occupational & Environmental Hygiene, 2000,15(9):686-694.
[34] Yongxue L, Tianshu Z, Guangqiang F, et al.Monitoring of pollution characteristics of atmospheric greenhouse gases using fourier infrared system[J]. Chinese Journal of Lasers, 2023, 6: 156-164.
[35] 丁学智, 龙瑞军, 米见对,等. 非分光红外(NDIR)技术测定反刍动物甲烷和二氧化碳研究[J].光谱学与光谱分析,2010,30(6): 1503-1506.
[36] 李俊,范斌斌,曾庆杰,等. 基于8.309μm QCL的硫化氢/甲烷开路式检测方法研究[J].光学精密工程,2024,4(1): 032.
[37] 张雅楠,刘灿,张磊,等. 基于NDIR技术的红外CO2气体传感器研究[J].仪表技术与传感器,2023,9(1): 23-28.
[38] Hammond K J, Humphries D J, Crompton L A, et al.Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer[J]. Animal Feed Science and Technology, 2015, 203: 41-52.
[39] 贾鹏,董利锋,屠焰,刁其玉.间接法测定反刍动物甲烷排放量的研究进展[J].动物营养学报,2021,33(9):4839-4847.
[40] Van B A E, Aldridge M N, Veerkamp R F, et al. Heritability and genetic correlations between enteric methane production and concentration recorded by GreenFeed and sniffers on dairy cows[J]. Journal of dairy science, 2023, 106(6): 4121-4132.
[41] Yunlong L, Songfeng Y, Yue C, et al.Algorithm fusion based full range high accuracy laser methane sensor[J]. Laser & Optoelectronics Progress, 2024, 61(19):35-37.
[42] Qinduan Z, Tingting Z, Yubin W, et al.Highly sensitive and reliable optical fiber TDLAS gas detection system for methane in situ monitoring in near space[J]. Applied Optics, 2023, 62(17): 4409-4414.
[43] 徐俊, 李云飞, 程跃,等. 基于TDLAS-WMS的甲烷泄漏遥测系统研制[J].激光与光电子学进展,2023.
[44] Brannon E Q, Moseman-Valtierra S M, Rella C W, et al. Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes[J]. Limnology and Oceanography: Methods, 2016, 14(7): 466-476.
[45] 夏滑, 张志荣, 庞涛,等. 基于腔增强吸收光谱技术探测水汽稳定同位素装置及方法[J].2020,12(1):93-104.
[46] 张宇, 王一丁, 李黎,等. 甲烷红外吸收光谱原理与处理技术分析[J].光谱学与光谱分析,2008,28(11): 5.
[47] 胡文平, 杜元龙. 硫化氢气体的危害性及其检测方法[J].材料保护,1996,29(12): 2.
[48] Huang Y.Development of a Methane-detection system using a distributed feedback laser diode and hollow-core photonic crystal fiber[J]. Electronics, 2023, 12(1):7-12.
[49] Xingxing G, Wei Z, Xiancai F, et al.Design and research of self-calibration NH3 gas detection device[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 82-86.
[50] Powers, Capelari.Analytical methods for quantifying greenhouse gas flux in animal production systems[J]. Journal of Animal Science, 2016, 94(8): 3139-3146.
[51] Bertrand R-L, Hulbert C.Automatic detection of methane emissions in multispectral satellite imagery using a vision transformer[J]. Nature communications, 2024, 15(1): 3081.
[52] Velez A F, Alvarez C I, Navarro F, et al.Assessing methane emissions from paddy fields through environmental and UAV remote sensing variables[J]. Environmental monitoring and assessment, 2024, 196(6): 574.
[53] Yuelin L.Aircraft Measure Arctic Methane[J]. International Aviation, 2021, 12: 67-67.
[54] Jongho Kim Jongho KimGraduate School of Environmental Studies S N U, Seoul, South KoreaMore by Jongho Kim, Kim J, Kim M B J, et al. Unexpected urban methane hotspots captured from aircraft observations[J]. ACS Earth and Space Chemistry, 2022, 6(3): 755-765.
[55] Abbadi S H E,Chen Z,Burdeau P M, et al. Technological maturity of aircraft-based methane sensing for greenhouse gas mitigation[J]. Environmental Science & Technology,2024,58(22):9591-9600.
[56] Bush D.Drones will help measure methane leaks from shipping[J]. Lloyd s List, 2022, 3: 1-3.
[57] 何卓, 李正强, 樊程,等. 大气甲烷卫星传感器和遥感算法研究综述[J].光学学报,2023,43(18):47-63.
[58] 张连翀, 徐丹, 咸迪,等. 我国温室气体观测卫星建设及典型数据应用[J].卫星应用,2023(7): 8-12.
[59] Divya Y,Sanjeevi S,Ilamparuthi K.A study on the hyperspectral signatures of sandy soils with varying texture and water content[J]. Arabian journal of geosciences, 2014, 7(7-9): 3537-3545.
[60] Lianchong Z, Dan X, Di X, et al.Construction of China's greenhouse gas observation satellites and typical data applications[J]. Satellite Application, 2023, 7: 8-12.
[61] 菅瑞珍, 贾生美, 邢明勋,等. 畜牧业温室气体的排放源及减排措施[J].当代畜禽养殖业,2022(6): 62-64.
[1] 汪俊彦, 郭凯军. 数字牧场助手:奶牛场可持续性、效率及环境影响的评估工具[J]. 中国乳业, 2024, 0(11): 45-49.
[2] 袁晓娟, 樊章梅. 牛呼吸道合胞体病的检测方法与疫苗研究[J]. 中国乳业, 2023, 0(3): 71-74.
[3] 沈紫霞, 常毅, 刘巧香, 郭刚, 马慧, 李有志, 廖晨星, 刘国世. 牛奶中褪黑素含量的检测方法[J]. 中国乳业, 2023, 0(2): 10-14.
[4] 赵梓棋, 李艳红, 李慧, 卢智华, 张红梅, 齐琦, 毕成名, 王丹慧, 王斌, 白晓玲, 张河霞. 高效液相色谱法测定乳及乳制品中唾液酸含量方法研究[J]. 中国乳业, 2023, 0(11): 91-99.
[5] 徐大江, 马占峰, 赵丽娟, 李波. 乳制品中糠氨酸和乳铁蛋白常用检测方法综述[J]. 中国乳业, 2023, 0(1): 52-57.
[6] 高爽. 高效液相色谱法在牛奶中磺胺类药物残留检测的应用[J]. 中国乳业, 2022, 0(6): 55-59.
[7] 王梦芝, 杨斯涵, 刘福元, 张振斌, 赵建. 缓释尿素制备工艺及其在反刍动物生产中应用的研究进展[J]. 中国乳业, 2021, 0(9): 32-39.
[8] 甘水燕, 刘虎, 周建伟. 反刍动物体内尿素循环及其转运蛋白的分子调控机制研究进展[J]. 中国乳业, 2021, 0(9): 21-31.
[9] 熊展博, 赵圣国, 王加启. 细菌脲酶分解尿素机制及其调控[J]. 中国乳业, 2021, 0(9): 3-7.
[10] 张书阅, 熊本海, 刘明, 蒋林树. 酿酒酵母培养物对瘤胃内环境和免疫功能的影响及其在反刍动物上的应用[J]. 中国乳业, 2021, 0(7): 18-24.
[11] 赵瑞, 杨世杰, 杨艳, 段玉娟. 乳制品中三聚氰胺检测方法研究进展[J]. 中国乳业, 2021, 0(5): 69-77.
[12] 郑永辉, 鞠鑫鑫, 孙辉, 郭建斌, 董仁杰. 奶牛场温室气体排放与减排措施[J]. 中国乳业, 2021, 0(11): 34-39.
[13] 王国艮, 葛旭升. 过瘤胃蛋白质保护技术在反刍动物饲料中的应用[J]. 中国乳业, 2019, 0(6): 41-46.
[14] 付瑶, 王俊, 齐志国, 郭江鹏. 高锌日粮对反刍动物的影响及在生产中的应用[J]. 中国乳业, 2019, 0(6): 38-40.
[15] 张雪, 张丽茹, 张筠. 婴幼儿配方乳粉中1,3-二油酸-2-棕榈酸甘油三酯的功能及检测方法研究进展[J]. 中国乳业, 2019, 0(5): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!