中国乳业 ›› 2025, Vol. 0 ›› Issue (11): 58-65.doi: 10.12377/1671-4393.25.11.07

• 优质乳工程专题 • 上一篇    下一篇

基于微型近红外仪检测特色乳中掺假荷斯坦牛乳

药舒乐1,2, 胡钰峰1,2, 宋晓东2, 郑楠1,2, 王加启1,2, 赵圣国1,2,*   

  1. 1 中国农业科学院北京畜牧兽医研究所,畜禽营养与饲养全国重点实验室,北京 100193;
    2 国家市场监督管理总局重点实验室(乳品质量数智监控技术),北京 100193
  • 发布日期:2025-12-22
  • 通讯作者: *赵圣国(1984-),男,山东临沂人,博士,研究员,博士生导师,研究方向为反刍动物营养与牛奶品质。
  • 作者简介:药舒乐(2004-),男,山西临汾人,在读硕士,研究方向为反刍动物营养;胡钰峰(1995-),男,湖北宜昌人,硕士,研究方向为反刍动物营养;宋晓东(1978-),女,吉林松原人,硕士,正高级工程师,研究方向为乳品工程;郑 楠(1980-),女,内蒙古包头人,博士,研究员,研究方向为奶产品质量与安全风险评估;王加启(1967-),男,安徽宿州人,博士,研究员,研究方向为奶牛营养与牛奶质量安全。
  • 基金资助:
    国家重点研发计划(2022YFD1600104)

Detection of Holstein Milk Adulteration in Specialty Milk Using a Miniaturized Near-infrared Spectrometer

YAO shule1,2, HU Yufeng1,2, SONG Xiaodong2, ZHENG Nan1,2, WANG Jiaqi1,2, ZHAO Shengguo1,2,*   

  1. 1 State Key Laboratory of Animal Nutrition and Feeding,Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193;
    2 Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology,State Administration for Market Regulation,Beijing 100193
  • Published:2025-12-22

摘要: [目的]本研究旨在探索利用微型近红外光谱技术检测特色乳中掺假荷斯坦牛乳的可行性。[方法]通过微型透射型和反射型近红外光谱仪获取了骆驼乳、牦牛乳、水牛乳、羊乳及其掺假荷斯坦牛乳样品的光谱数据,并采用偏最小二乘回归、支持向量机和线性判别分析分别建立了定量和定性模型。[结果]定量模型展现出良好的预测能力,透射型预测模型决定系数为0.78~0.99,均方根误差为2.31~13.68,而反射型预测模型决定系数为0.89~0.98,均方根误差为4.68~9.77。在定性分析中,支持向量机模型的分类性能优于线性判别分析模型,其中透射型光谱的支持向量机模型分类准确率为90.91%~100.00%,反射型光谱的支持向量机分类准确率为80.00%~100.00%。[结论]本研究表明,微型近红外光谱仪作为一种快速、便捷的检测工具,具有显著的应用潜力,可实现乳品掺假的现场化和实时化检测,为乳品质量控制和市场监管提供了有力的技术支持。

关键词: 近红外光谱, 特色乳, 掺假, 荷斯坦牛乳, 鉴别模型

Abstract: [Objective] This study explored using miniaturized near-infrared (NIR) spectroscopy to detect Holstein milk adulteration in specialty milks. [Method] Spectral data of camel,yak,buffalo,goat milk,and their adulterated samples with Holstein milk were collected via miniaturized transmissive and reflective NIR spectrometers. Then,quantitative models were built with partial least squares regression,while qualitative models were developed using support vector machine (SVM) and linear discriminant analysis (LDA). [Result] Quantitative models showed good predictive ability. Transmissive predictive models achieved a coefficient of determination(R²) of 0.78~0.99 and a root mean square error (RMSE) of 2.31~13.68,while reflective ones got 0.89~0.98 and 4.68~9.77,respectively. In qualitative analysis,SVM outperformed LDA in classification. Transmissive-spectrum SVM reached 90.91%~100.00% accuracy,and reflective-spectrum SVM 80.00%~100.00%. [Conclusion] This study indicated that miniaturized NIR spectrometers,as fast and convenient detection tools,hold great application potential. The devices enable on-site and real-time detection of milk adulteration,offering strong technical support for dairy quality control and market regulation.

Key words: near-infrared spectroscopy, specialty milk, adulteration, Holstein milk, discrimination models

[1] Mcparland S,Banos G,Wall E,et al.The use of mid-infrared spectrometry to predict body energy status of Holstein cows1[J]. Journal of Dairy Science,2011,94(7):3651-3661.
[2] Mcparland S,Lewis E,Kennedy E,et al.Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows[J]. Journal of Dairy Science,2014,97(9):5863-5871.
[3] Zhang J,Wei L,Miao J,et al.Authenticity identification of animal species in characteristic milk by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry[J]. Food Chemistry,2024,436:137736.
[4] Windarsih A,Arifah M F,Suratno,et al. The Application of untargeted metabolomics using UHPLC-HRMS and chemometrics for authentication of horse milk adulterated with cow milk[J]. Food Analytical Methods,2023,16(2):401-412.
[5] Bansal S,Apoorva S,Manisha M,et al.Food adulteration:Sources,health risks,and detection methods[J]. Critical Reviews in Food Science and Nutrition,2017,57(6):1174-1189.
[6] Shabani H,Mehdizadeh M,Mousavi S M,et al.Halal authenticity of gelatin using species-specific PCR[J]. Food Chemistry,2015,184:203-6.
[7] Agrimonti C,Pirondini A,Marmiroli M,et al.A quadruplex PCR (qxPCR) assay for adulteration in dairy products[J]. Food Chemistry,2015,187:58-64.
[8] Guo L,Qian J P,Guo Y S,et al.Simultaneous identification of bovine and equine DNA in milks and dairy products inferred from triplex TaqMan real-time PCR technique[J]. Journal of Dairy Science,2018,101(8):6776-6786.
[9] Sharma R,Rajput Y S,Poonam,et al. Estimation of sugars in milk by HPLC and its application in detection of adulteration of milk with soymilk[J]. International Journal of Dairy Technology,2009,62(4):514-519.
[10] Chen H,Tan C,Lin Z,et al.Detection of melamine adulteration in milk by near-infrared spectroscopy and one-class partial least squares[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,173:832-836.
[11] 金垚,杜斌,智秀娟. NIR技术快速鉴定牛奶品牌与掺假识别[J]. 食品研究与开发,2016,37(3):178-181.
[12] Santos P M,Pereira-Filho E R,Rodriguez-Saona L E. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis[J]. Food Chemistry,2013,138(1):19-24.
[13] Durakli Velioglu S,Ercioglu E,Boyaci I H.Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods[J]. Journal Dairy Research,2017,84(2):214-219.
[14] Mabood F,Jabeen F,Hussain J,et al.FT-NIRS coupled with chemometric methods as a rapid alternative tool for the detection & quantification of cow milk adulteration in camel milk samples[J]. Vibrational Spectroscopy,2017,92:245-250.
[15] Mabood F,Jabeen F,Ahmed M,et al.Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk[J]. Food Chemistry,2017,221:746-750.
[16] 段宇飞,王巧华,马美湖,等. 基于LLE-SVR的鸡蛋新鲜度可见/近红外光谱无损检测方法[J]. 光谱学与光谱分析,2016,36(4):981-985.
[17] 张中卫,温志渝,曾甜玲,等. 微型近红外光纤光谱仪用于奶粉中蛋白质脂肪的定量检测研究[J]. 光谱学与光谱分析,2013,33(7):1796-1800.
[18] De Moraes-Neto V F,Costa-Santos A C,Pallone J a L. Portable near-infrared spectrometer in tandem with chemometrics as an option for the authenticating commercial A2 bovine milk[J]. Food Analytical Methods,2025(18):1099-1018.
[19] Basri K N,Hussain M N,Bakar J,et al.Classification and quantification of palm oil adulteration via portable NIR spectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,173:335-342.
[20] Pereira E V D S,Fernandes D D D S,De Araújo M C U,et al. Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms[J]. LWT-Food Science and Technology,2020,127:109427.
[21] Liu N,Parra H A,Pustjens A,et al.Evaluation of portable near-infrared spectroscopy for organic milk authentication[J]. Talanta,2018,184:128-135.
[1] 刘杰, 彭翔, 李梅, 刘超, 李利芬. 近红外光谱技术检测巴氏杀菌乳中糠氨酸含量的研究与应用[J]. 中国乳业, 2025, 0(9): 118-122.
[2] 孙玉荣, 胡文秀, 李君冉, 任利强, 王海斌, 胡冬梅, 田晓芳. 影响生牛乳冰点的因素分析[J]. 中国乳业, 2025, 0(3): 65-70.
[3] 赵成莹, 袁静, 王宝菊, 刘恒煜, 刘承军, 周广驰, 李志强, 刘晓. 乳品掺假检测技术研究进展[J]. 中国乳业, 2024, 0(3): 77-82.
[4] 刘彩娟, 张永久, 任亮, 王永信. 东北奶牛场使用近红外光谱分析仪检测玉米青贮的应用实例[J]. 中国乳业, 2024, 0(12): 42-46.
[5] 任建存. 我国特色乳制品的营养功效与产业发展[J]. 中国乳业, 2021, 0(8): 34-39.
[6] 谢婷婷, 黄子珍, 曾庆坤, 杨攀, 李玲, 黄丽. 液相色谱技术在特种乳制品中掺入其他乳源的研究现状[J]. 中国乳业, 2020, 0(3): 67-70.
[7] 张昊阳, 严林, 党高平, 刘永峰. 羊乳制品掺假检测技术研究进展[J]. 中国乳业, 2019, 0(8): 132-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!