中国乳业 ›› 2021, Vol. 0 ›› Issue (8): 68-75.doi: 10.12377/1671-4393.21.08.13
沈义媛1, 童津津1, 熊本海2, 蒋林树1,*
SHEN Yiyuan1, TONG Jinjin1, XIONG Benhai2, JIANG Lingshu1,*
摘要: 对于反刍动物而言,瘤胃对宿主的新陈代谢、机体免疫调节具有重要的意义。作为瘤胃内强大而丰富的群落,瘤胃微生物结构紊乱不仅会导致生产性能下降,还会引发机体全身炎症反应。近年来,多组学技术分析瘤胃微生物与宿主的关系及其调控机制已逐渐受到研究者的关注。本文从瘤胃微生物的影响因素、多组学技术在瘤胃微生物中的应用及瘤胃微生物紊乱对宿主的影响等多方面进行综述,以通过调节瘤胃微生物来提高奶牛生产性能、增强机体免疫力以及预防疾病等新的视角为奶牛养殖者提供参考。
[1] Lin L,Xie F,Sun D,et al.Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model[J].Microbiome,2019,7(1):83. [2] Dias J,Marcondes M I,et al.Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development[J].Applied and Environmental Microbiology,2018,84(9):e2617-e2675. [3] Jami E,Israel A,Kotser A,et al.Exploring the bovine rumen bacterial community from birth to adulthood[J].ISME Journal,2013,7(6):1069-1079. [4] Paz H A,Hales K E,Wells J E,et al.Rumen bacterial community structure impacts feed efficiency in beef cattle[J].Journal of Animal Science,2018,96(3):1045-1058. [5] Koch F,Thom U,Albrecht E,et al.Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J].Proceedings of the National Academy of Sciences,2019,116(21):10333-10338. [6] 马燕芬,陈琦,杜瑞平,等.热应激对奶山羊瘤胃上皮细胞屏障通透性的影响[J].中国农业科学,2013,46(21):4478-4485. [7] Kim D,Kim M,Kim S,et al.Differential dynamics of the ruminal microbiome of jersey cows in a heat stress environment[J].Animals,2020,10(7):1127. [8] Zhao S,Min L,Zheng N,et al.Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows[J].Animals (Basel),2019,9(11):925. [9] Pederzolli R A,Campbell J,et al.Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers[J].Journal of Animal Science,2018,96(1):108-125. [10] 李晗,王宇,高景,等.热应激对瘤胃微生物的影响及其与奶牛生产性能的关系[J].动物营养学报,2019,31(10):4458-4463. [11] 李淑红. 高温引发的奶牛热应激及其饲养管理调控措施[J].现代畜牧科技,2018(4):24. [12] Vaidya J D,Gastele S V,Smidt H, et al.Characterization of dairy cow rumen bacterial and archaeal communities associated with grass silage and maize silage based diets[J].PLoS One,2020,15(3):e229887. [13] 徐晓锋,胡丹丹,郭婷婷,等.不同精粗比饲粮条件下奶牛瘤胃细菌菌群结构变化的研究[J].动物营养学报,2019,31(12):5541-5550. [14] 汪悦,张议夫,蒋林树.茶皂素对奶牛瘤胃甲烷菌及甲烷排放的影响[J].中国农学通报,2018,34(29):104-111. [15] Kasparovska J,Pecinkova M,Dadakova K,et al.Effects of Isoflavone-Enriched Feed on the Rumen Microbiota in Dairy Cows[J].PLoS One,2016,11(4):e154642. [16] Hu R,Zou H,Wang Z,et al.Nutritional interventions improved rumen functions and promoted compensatory growth of growth-retarded yaks as revealed by integrated transcripts and microbiome analyses[J].Frontiers in Microbiology,2019,10:318. [17] Fomenky B E,Do D N,Talbot G,et al.Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre-and post-weaned calves[J].Scientific Reports,2018,8(1):14147. [18] Li S,Wang Q,LIN X,et al.The use of“Omics”in lactation research in dairy cows[J].International Journal of Molecular Sciences,2017,18(5):983. [19] 薛夫光,施辉毕,孙福昱,等.宏基因组分析方法探究高精料日粮对奶牛瘤胃产甲烷菌的影响[J].农业大数据学报,2019,1(1):45-55. [20] Tong J J,Zhang H,Yang D,et al.Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows[J].PLoS One,2018,13(11):e198225. [21] Zhong Y,Xue M,Liu J.Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts[J].Frontiers in Microbiology,2018,9:3217. [22] Wirth R,Kadar G,Kakuk B,et al.The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing[J].Frontiers in Microbiology,2018,9:2285. [23] 盖叶顶,王后福,王淑玲,等.瘤胃微生物宏组学分析及研究进展[J].中国畜牧杂志,2020,56(3):7-12. [24] Delgado B,Bach A,Guasch I,et al.Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle[J].Scientific Reports,2019,9(1):11. [25] 吴建民,王雍,周协琛,等.基于宏基因组学解析瘤胃微生物调节荷斯坦奶牛乳蛋白含量的研究[J].动物营养学报,2020,32(8):3843-3855. [26] Shinkai T,Mitsumori M,Sofyan A,et al.Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen[J].Animal Science Journal,2016,87(11):1363-1370. [27] Duque E,Daddaoua A,Cordero B F, et al.Ruminal metagenomic libraries as a source of relevant hemicellulolytic enzymes for biofuel production[J].Microbial Biotechnology,2018,11(4):781-787. [28] 韦人月,郑家三.代谢组学技术在奶牛生产性疾病研究中的应用[J].畜牧与饲料科学,2020,41(1):18-22. [29] Zhang H,Tong J J,Zhang Y,et al.Metabolomics reveals potential biomarkers in the rumen fluid of dairy cows with different levels of milk production[J].Asian-Australasian Journal of Animal Sciences,2020,33(1):79-90. [30] Mu Y,Lin X,Wang Z,et al.High-production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than low-production cattle[J].MicrobiologyOpen,2018,8(4):e673. [31] Shabat S K,Sasson G,et al.Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J].ISME Journal,2016,10(12):2958-2972. [32] Malmuthuge N,Liang G,Guan L L.Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes[J].Genome Biology,2019,20(1):172. [33] Xue M,Sun H,Wu X, et al.Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance[J].Microbiome,2020,8(1):64. [34] Sun H Z,Zhou M,Wang O,et al.Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows[J].Bioinformatics,2020,36(8):2530-2537. [35] Mu C,Yang Y,Zhu W.Gut microbiota:the brain peacekeeper[J].Frontiers in Microbiology,2016,7:345. [36] Anderson C L,Schneider C J,Erickson G E,et al.Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs[J].Journal of Applied Microbiology,2016,120(3):588-599. [37] Plaizier J C,Li S,Tun H M,et al.Nutritional Models of Experimentally-Induced Subacute Ruminal Acidosis (SARA) Differ in Their Impact on Rumen and Hindgut Bacterial Communities in Dairy Cows[J].Frontiers in Microbiology,2017,7:2128. [38] Zhao C,Liu G,Li X,et al.Inflammatory mechanism of rumenitis in dairy cows with subacute ruminal acidosis[J].BMC Veterinary Research,2018,14(1):135. [39] LiW,Gelsinger S,Edwards A,et al.Transcriptome analysis of rumen epithelium and meta-transcriptome analysis of rumen epimural microbial community in young calves with feed induced acidosis[J].Scientific Reports,2019,9(1):4744. [40] Johnzon C,Dahlberg J,Gustafson A,et al.The Effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach[J].Frontiers in Immunology,2018,9:1487. [41] Humer E,Aditya S,Zebeli Q.Innate immunity and metabolomic responses in dairy cows challenged intramammarily with lipopolysaccharide after subacute ruminal acidosis[J].Animal,2018,12(12):2551-2560. [42] Aditya S,Humer E,Pourazad P,et al.Metabolic and stress responses in dairy cows fed a concentrate-rich diet and submitted to intramammary lipopolysaccharide challenge[J].Animal,2018,12(4):741-749. [43] 胡晓宇. 奶牛瘤胃菌群紊乱与乳腺炎的关联性及机制研究:[博士论文][D].长春:吉林大学,2020. [44] Zebeli Q,Metzler-zebeli B U.Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle[J].Research in Veterinary Science,2012,93(3):1099-1108. [45] 海丽丽,李婷婷,刘博,等.TLR4介导大肠杆菌感染的奶牛子宫内膜组织中PGE2分泌研究[J].黑龙江畜牧兽医,2019(21):18-21. [46] Bilal M S,Abaker J A,Aabdin Z U l,et al. Lipopolysaccharide derived from the digestive tract triggers an inflammatory response in the uterus of mid-lactating dairy cows during SARA[J].BMC Veterinary Research,2016,12(1):284. [47] Miller B A,Brewer A,Nanni P,et al.Characterization of circulating plasma proteins in dairy cows with cytological endometritis[J].Journal of Proteomics,2019,205:103421. [48] Tadepalli S,Narayanan S K,Stewart G C,et al.Fusobacterium necrophorum:a ruminal bacterium that invades liver to cause abscesses in cattle[J].Anaerobe,2009,15(1-2):36-43. [49] Narayanan S K,Nagaraja T G,Chengappa M M, etal. Cloning, sequencing, and expression of the leukotoxin gene from Fusobacterium necrophorum[J].Infect Immun,2001,69(9):5447-55. [50] 郑家三. 奶牛腐蹄病的蛋白质组学和代谢组学研究:[博士论文][D].哈尔滨:东北农业大学,2017. |
[1] | 杨露. 益生菌对奶牛产奶量、乳成分及瘤胃微生物区系的影响[J]. 中国乳业, 2022, 0(8): 15-18. |
[2] | 王志永, 李金春, 季云福, 李明, 李国明, 孟祥雨. 一例奶牛瘤胃异物堵塞的诊治与预防[J]. 中国乳业, 2022, 0(3): 37-40. |
[3] | 巴音巴特, 斯热格林, 袁徳军, 佐·德力格尔, 叶克拉. 奶牛瘤胃酸中毒的微生态制剂疗法[J]. 中国乳业, 2022, 0(12): 68-71. |
[4] | 张石建, 周迎春. 中药复方对泌乳牛生产性能和瘤胃发酵参数的影响[J]. 中国乳业, 2022, 0(11): 42-46. |
[5] | 焦修成. 奶牛乳房炎、瘤胃积食和酮血症的诊断和防治[J]. 中国乳业, 2022, 0(1): 54-57. |
[6] | 熊展博, 赵圣国, 王加启. 细菌脲酶分解尿素机制及其调控[J]. 中国乳业, 2021, 0(9): 3-7. |
[7] | 陆钟岩, 张雯萱, 阿合拉·托留拜. 日粮添加尿素对瘤胃上皮细胞增殖、凋亡以及吸收转运能力的影响[J]. 中国乳业, 2021, 0(9): 8-20. |
[8] | 逄世龙, 司海锋, 侯杰, 张文晔, 逄国梁. 奶牛瘤胃发酵性能与产奶量的相关性分析[J]. 中国乳业, 2021, 0(9): 74-78. |
[9] | 张书阅, 熊本海, 刘明, 蒋林树. 酿酒酵母培养物对瘤胃内环境和免疫功能的影响及其在反刍动物上的应用[J]. 中国乳业, 2021, 0(7): 18-24. |
[10] | 姜富贵, 李德鹏, 成海建, 苏文政, 张召坤, 时光, 宋恩亮. 过瘤胃氨基酸对泌乳早期奶牛生产性能、乳成分和血液生化指标的影响[J]. 中国乳业, 2021, 0(7): 25-31. |
[11] | 文明星. 夏季奶山羊常发疾病的防治[J]. 中国乳业, 2021, 0(6): 62-67. |
[12] | 古丽阿托提·阿布都热依木. 奶牛常见消化系统疾病防控[J]. 中国乳业, 2021, 0(5): 51-57. |
[13] | 曹旺. 奶牛瘤胃臌气与瘤胃积食的鉴别诊断[J]. 中国乳业, 2021, 0(1): 37-39. |
[14] | 张向宏, 柳启武, 焦剑平. 粪便分离筛在提高奶业生产效率中的作用[J]. 中国乳业, 2020, 0(9): 33-37. |
[15] | 田得苗. 秋季奶牛常见病的防治[J]. 中国乳业, 2020, 0(11): 41-44. |
|