中国乳业 ›› 2025, Vol. 0 ›› Issue (8): 37-46.doi: 10.12377/1671-4393.25.08.07
张建波1, 黑立新1, 裴廷福1, 朱高照1, 胡智胜2,*
ZHANG Jianbo1, HEI Lixin1, PEI Tingfu1, ZHU Gaozhao1, HU Zhisheng2,*
摘要: 奶牛葡萄球菌性乳腺炎主要由金黄色葡萄球菌、非金黄色葡萄球菌引起。金黄色葡萄球菌是最常见的乳腺炎致病菌,能够通过其毒力因子引发乳腺的急性或慢性感染,并导致奶产量下降、乳汁体细胞数升高。非金黄色葡萄球菌菌株,虽然通常被视为次要病原体,但也能引起奶牛亚临床乳腺炎、影响奶质。葡萄球菌通过多种机制逃避宿主的免疫防御,包括生物膜的形成、细胞内存活、免疫逃逸因子的产生。此外,葡萄球菌通过诱导自噬、改变细胞壁结构等方式,增强其在宿主中的持久性、致病性。宿主的免疫反应包括先天性免疫、适应性免疫的协同作用,其中中性粒细胞、巨噬细胞在初期的免疫防御中起关键作用,而抗体、细胞介导的免疫反应则有助于清除感染。本文旨在分析奶牛葡萄球菌性乳腺炎的致病、防御机制,以期为疾病防治提供新思路。
| [1] Kaseke T B,Chikwambi Z,Gomo C,et al.Antibacterial activity of medicinal plants on the management of mastitis in dairy cows:A systematic review[J].Veterinary Medicine and Science,2023,9(6):2800-2819. [2] Silva V,Araújo S,Monteiro A,et al.Staphylococcus aureus and MRSA in livestock:Antimicrobial resistance and genetic lineages[J].Microorganisms,2023,11(1):124. [3] Carlson S K,Erickson D L,Wilson E.Staphylococcus aureus metal acquisition in the mastitic mammary gland[J].Microbial Pathogenesis,2020,144:104179. [4] Song M,Tang Q,Ding Y,et al.Staphylococcus aureus and biofilms:Transmission,threats,and promising strategies in animal husbandry[J].Journal of Animal Science and Biotechnology,2024,15(1):44. [5] Rainard P,Gilbert F B,Germon P.Immune defenses of the mammary gland epithelium of dairy ruminants[J].Frontiers in Immunology,2022,13:1031785. [6] Madhaiyan M,Wirth J S,Saravanan V S.Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms,the promotion of five subspecies to novel species,the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov.,and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae[J].International Journal of Systematic and Evolutionary Microbiology,2020,70(11):5926-5936. [7] Jenkins S N,Okello E,Rossitto P V,et al.Molecular epidemiology of coagulase-negative Staphylococcus species isolated at different lactation stages from dairy cattle in the United States[J].Peer J,2019,7:e6749. [8] Cole K,Foster D,Russell J E,et al.Draft genome sequences of 64 type strains of 50 species and 25 subspecies of the Genus Staphylococcus Rosenbach 1884[J].Microbiology Resource Announcements,2019,8(17):e00062-19. [9] Lisowska-Łysiak K,Lauterbach R,Międzobrodzki J,et al.Epidemiology and pathogenesis of Staphylococcus Bloodstream infections in humans:A review[J].Polish Journal of Microbiology,2021,70(1):13-23. [10] Nasser A,Dallal M M S,Jahanbakhshi S,et al.Staphylococcus aureus:Biofilm formation and strategies against it[J].Current Pharmaceutical Biotechnology,2022,23(5):664-678. [11] Naushad S, Kanevets U, Nobrega D, Carson D, Dufour S, Roy JP, Lewis PJ, Barkema HW.Staphylococcus debuckii sp. nov., a coagulase-negative species from bovine milk. International Journal of Systematic Bacteriology, 2019,69(8):2239-2249. [12] Sabino Y N V,Cotter P D,Mantovani H C.Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis:A new therapeutic option?[J].Microbiological Research,2023,271:127345. [13] Campos B,Pickering A C,Rocha L S,et al.Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis:Current understanding and future perspectives[J].BMC Veterinary Research,2022,18(1):115. [14] Sears P M,Mccarthy K K.Management and treatment of staphylococcal mastitis[J].Veterinary Clinics of North America Food Animal Practice,2003,19(1):171-185. [15] Dufour S,Dohoo I R,Barkema H W,et al.Manageable risk factors associated with the lactational incidence,elimination,and prevalence of Staphylococcus aureus intramammary infections in dairy cows[J].Journal of Dairy Science,2012,95(3):1283-300. [16] Bravo-Santano N,Ellis J K,Mateos L M,et al.Intracellular Staphylococcus aureus modulates host central carbon metabolism to activate autophagy[J].mSphere,2018,3(4):e00374-18. [17] Hébert A,Sayasith K,Sénéchal S,et al.Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk[J].FEMS Microbiology Letters,2000,193(1):57-62. [18] Neumann Y,Bruns S A,Rohde M,et al.Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase[J].Autophagy,2016,12(11):2069-2084. [19] Steele S,Brunton J,Kawula T.The role of autophagy in intracellular pathogen nutrient acquisition[J].Frontiers in Cellular and Infection Microbiology,2015,5:51. [20] Casanova J E.Bacterial autophagy:Offense and defense at the host-pathogen interface[J].Cellular and Molecular Gastroenterology and Hepatology,2017,4(2):237-243. [21] Wald R,Hess C,Urbantke V,et al.Characterization of Staphylococcus species isolated from bovine quarter milk samples[J].Animals(Basel),2019,9(5):200. [22] Rosa N M,Penati M,Fusar-Poli S,et al.Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus,Mammaliicoccus,and Streptococcus spp. associated with sheep and goat mastitis[J].Veterinary Research,2022,53(1):84. [23] Silva V,Correia E,Pereira J E,et al.Exploring the biofilm formation capacity in S. pseudintermedius and coagulase-negative Staphylococci species[J].Pathogens,2022,11(6):689. [24] Mosser D M,Edwards J P.Exploring the full spectrum of macrophage activation[J].Nature Reviews Immunology,2008,8(12):958-69. [25] Supré K,Haesebrouck F,Zadoks R N,et al.Some coagulase-negative Staphylococcus species affect udder health more than others[J].Journal of Dairy Science,2011,94(5):2329-40. [26] Taponen S,Simojoki H,Haveri M,et al.Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP[J].Veterinary Microbiology,2006,115(1-3):199-207. [27] Piccart K,Verbeke J,De Visscher A,et al.Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers[J].Veterinary Research,2016,47(1):56. [28] Simojoki H,Salomäki T,Taponen S,et al.Innate immune response in experimentally induced bovine intramammary infection with Staphylococcus simulans and S. epidermidis[J].Veterinary Research,2011,42(1):49. [29] Nanra J S,Buitrago S M,Crawford S,et al.Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus[J].Human Vaccines & Immunotherapeutics,2013,9(3):480-7. [30] Fry P R,Middleton J R,Dufour S,et al.Association of coagulase-negative staphylococcal species,mammary quarter milk somatic cell count,and persistence of intramammary infection in dairy cattle[J].Journal of Dairy Science,2014,97(8):4876-85. [31] Beuckelaere L,De Visscher A,Souza F N,et al.Colonization and local host response following intramammary Staphylococcus chromogenes challenge in dry cows[J].Veterinary Research,2021,52(1):137. [32] Crespi E,Pereyra A M,Puigdevall T,et al.Antimicrobial resistance studies in staphylococci and streptococci isolated from cows with mastitis in Argentina[J].Journal of Veterinary Science,2022,23(6):e12. [33] Guo Y,Song G,Sun M,et al.Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus[J].Frontiers in Cellular and Infection Microbiology,2020,10:107. [34] Tasneem U,Mehmood K,Majid M,et al.Methicillin resistant Staphylococcus aureus:A brief review of virulence and resistance[J].Journal of the Pakistan Medical Association,2022,72(3):509-515. [35] Roy J P,Descôteaux L,Dutremblay D,et al.Efficacy of a 5-day extended therapy program during lactation with cephapirin sodium in dairy cows chronically infected with Staphylococcus aureus[J].Canadian Veterinary Journal,2009,50(12):1257-62. [36] Taponen S,Tölli H T,Rajala-Schultz P J.Antimicrobial susceptibility of staphylococci from bovine milk samples in routine microbiological mastitis analysis in Finland[J].Frontiers in Veterinary Science,2023,10:1235417. [37] Romanò A,Ivanovic I,Segessemann T,et al.Elucidation of the bovine intramammary bacteriome and resistome from healthy cows of Swiss dairy farms in the Canton Tessin[J].Frontiers in Microbiology,2023,14:1183018. [38] Brown M M,Horswill A R.Staphylococcus epidermidis-Skin friend or foe?[J].PLoS Pathog,2020,16(11):e1009026. [39] Jiang J-H,Cameron D R,Nethercott C,et al.Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages[J].Clinical Microbiology Reviews,2023,36(4):e0014822. [40] Villanueva M,García B,Valle J,et al.Sensory deprivation in Staphylococcus aureus[J].Nature Communications,2018,9(1):523. [41] Yarwood J M,McCormick J K,Schlievert P M.Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus[J].Journal of Bacteriology,2001,183(4):1113-23. [42] Rom J S,Atwood D N,Beenken K E,et al.Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model[J].Virulence,2017,8(8):1776-1790. [43] Foster T J,Geoghegan J A,Ganesh V K,et al.Adhesion,invasion and evasion:The many functions of the surface proteins of Staphylococcus aureus[J].Nature Reviews Microbiology,2014,12(1):49-62. [44] Ubeda C,Maiques E,Knecht E,et al.Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci[J].Molecular Microbiology,2005,56(3):836-44. [45] Majumder S,Sackey T,Viau C,et al.Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity[J].BMC Microbiology,2023,23(1):43. [46] Napodano C,Marino M,Stefanile A,et al.Immunological role of IgG subclasses[J].Immunological Investigations,2021,50(4):427-444. [47] Daum R S,Spellberg B.Progress toward a Staphylococcus aureus vaccine[J].Clinical Infectious Diseases,2012,54(4):560-7. [48] Guo H,Tong Y,Cheng J,et al.Biofilm and small colony variants-An update on Staphylococcus aureus strategies toward drug resistance[J].International Journal of Molecular Sciences,2022,23(3):1241. [49] Ong Z X,Kannan B,Becker D L.Exploiting transposons in the study of Staphylococcus aureus pathogenesis and virulence[J].Critical Reviews in Microbiology,2023,49(3):297-317. [50] Tam K,Torres V J.Staphylococcus aureus secreted toxins and extracellular enzymes[J].Microbiology Spectrum,2019,7(2):640-668. [51] Kusch H,Engelmann S.Secrets of the secretome in Staphylococcus aureus[J].International Journal of Medical Microbiology,2014,304(2):133-41. [52] Xiong Y Q,Willard J,Yeaman M R,et al.Regulation of Staphylococcus aureus alpha-toxin gene(hla) expression by agr,sarA,and sae in vitro and in experimental infective endocarditis[J].Journal of Infectious Diseases,2006,194(9):1267-75. [53] Nygaard T K,Pallister K B,DuMont A L,et al.Alpha-toxin induces programmed cell death of human T cells,B cells,and monocytes during USA300 infection[J].PLoS One,2012,7(5):e36532. [54] Kong C,Neoh H M,Nathan S.Targeting Staphylococcus aureus toxins:A potential form of anti-virulence therapy[J].Toxins(Basel),2016,8(3):72. [55] Grumann D,Nübel U,Bröker B M.Staphylococcus aureus toxins--Their functions and genetics[J].Infect Genet Evol,2014,21:583-592. [56] Oliveira D,Borges A,Simões M.Staphylococcus aureus toxins and their molecular activity in infectious diseases[J].Toxins(Basel),2018,10(6):252. [57] Wu S,Zhang J,Peng Q,et al.The role of Staphylococcus aureus YycFG in gene regulation,biofilm organization and drug resistance[J].Antibiotics(Basel),2021,10(12):1555. [58] Menard G,Silard C,Suriray M,et al.Thirty years of sRNA-mediated regulation in Staphylococcus aureus:From initial discoveries to in vivo biological implications[J].International Journal of Molecular Sciences,2022,23(13):7346. [59] Rudra P,Boyd J M.Metabolic control of virulence factor production in Staphylococcus aureus[J].Current Opinion in Microbiology,2020,55:81-87. [60] Zigo F,Vasil’ M,Ondrašovičová S,et al.Maintaining optimal mammary gland health and prevention of mastitis[J].Frontiers in Veterinary Science,2021,8:607311. [61] Trevisi E,Minuti A.Assessment of the innate immune response in the periparturient cow[J].Research in Veterinary Science,2018,116:47-54. [62] Ren Z,Yu Y,Chen C,et al.The triangle relationship between long noncoding RNA,RIG-I-like receptor signaling pathway,and glycolysis[J].Frontiers in Microbiology,2021,12:807737. [63] Duan T,Du Y,Xing C,et al.Toll-like receptor signaling and its role in cell-mediated immunity[J].Frontiers in Immunology,2022,13:812774. [64] Mantovani A,Garlanda C.Humoral innate immunity and acute-phase proteins[J].The New England Journal of Medicine,2023,388(5):439-452. [65] Thomer L,Schneewind O,Missiakas D.Pathogenesis of Staphylococcus aureus Bloodstream infections[J].Annual Review of Pathology: Mechanisms of Disease,2016,11:343-64. [66] Murphy M P,Niedziela D A,Leonard F C,et al.The in vitro host cell immune response to bovine-adapted Staphylococcus aureus varies according to bacterial lineage[J].Scientific Reports,2019,9(1):6134. [67] Chen Y,Liu Z,Lin Z,et al.The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis[J].Frontiers in Immunology,2023,14:1219895. [68] Germon P,Martins R P.Immune defences of the mammary gland in dairy ruminants[J].Reproduction in Domestic Animals,2023,58(Suppl 2):4-14. [69] Huan Y,Kong Q,Mou H,et al.Antimicrobial peptides:Classification,design,application and research progress in multiple fields[J].Frontiers in Microbiology,2020,11:582779. [70] Rainard P,Foucras G,Martins R P.Adaptive cell-mediated immunity in the mammary gland of dairy ruminants[J].Frontiers in Veterinary Science,2022,9:854890. [71] Wellnitz O,Bruckmaier R M.Invited review:The role of the blood-milk barrier and its manipulation for the efficacy of the mammary immune response and milk production[J].Journal of Dairy Science,2021,104(6):6376-6388. [72] Annunziato F,Romagnani C,Romagnani S.The 3 major types of innate and adaptive cell-mediated effector immunity[J].Journal of Allergy & Clinical Immunology,2015,135(3):626-635. [73] Rainard P,Cunha P,Martins R P,et al.Type 3 immunity:A perspective for the defense of the mammary gland against infections[J].Veterinary Research,2020,51(1):129. [74] Porcherie A,Gilbert F B,Germon P,et al.IL-17A is an important effector of the immune response of the mammary gland to Escherichia coli infection[J].Journal of Immunology,2016,196(2):803-12. [75] Flajnik M F,Kasahara M.Origin and evolution of the adaptive immune system:Genetic events and selective pressures[J].Nature Reviews Genetics,2010,11(1):47-59. [76] Wilson G J,Tuffs S W,Wee B A,et al.Bovine Staphylococcus aureus superantigens stimulate the entire T Cell Repertoire of cattle[J].Infection and Immunity,2018,86(11):e00505-18. [77] Tuchscherr L,Löffler B,Proctor R A.Persistence of Staphylococcus aureus:Multiple metabolic pathways impact the expression of virulence factors in Small-Colony Variants(SCVs)[J].Frontiers in Microbiology,2020,11:1028. |
| [1] | 严海涛, 纪双慧, 胡智胜. 金黄色葡萄球菌引起牛乳腺炎的抗微生物应对措施[J]. 中国乳业, 2025, 0(8): 67-74. |
| [2] | 伏广达, 刘维红, 胡智胜. 奶牛乳腺炎金黄色葡萄球菌毒力因子与抗菌素耐药性关系研究进展[J]. 中国乳业, 2025, 0(7): 90-99. |
| [3] | 亓爱杰, 李莹, 李路胜. 奶山羊乳腺炎金黄色葡萄球菌分离鉴定与耐药性检测——以山东聊城为例[J]. 中国乳业, 2025, 0(7): 71-77. |
| [4] | 刘登堂. 17 味中药及其复方对奶牛乳房炎金黄色葡萄球菌的体外抑菌试验研究[J]. 中国乳业, 2024, 0(2): 46-50. |
| [5] | 张树华. 奶牛源多重耐药金黄色葡萄球菌耐药机制及治疗[J]. 中国乳业, 2024, 0(12): 82-85. |
| [6] | 欧秀玲, 蔡扩军, 徐敏. 生驼乳中金黄色葡萄球菌的分离鉴定与耐药性分析[J]. 中国乳业, 2022, 0(8): 29-33. |
| [7] | 张立强, 雷静. 宁夏地区规模牧场金黄色葡萄球菌的分离鉴定与药敏试验[J]. 中国乳业, 2022, 0(3): 46-49. |
| [8] | 顾晟琳, 夏亚文, 徐琼. 乳粉中金黄色葡萄球菌测定不确定度评定[J]. 中国乳业, 2022, 0(12): 115-119. |
| [9] | 陈明杰, 曹梦园, 王晨豫, 闫雪琪, 齐亚银*. 新疆某牧场乳房炎奶样的细菌分离鉴定与药物敏感试验[J]. 中国乳业, 2021, 0(7): 59-62. |
|
||