中国乳业 ›› 2025, Vol. 0 ›› Issue (10): 51-56.doi: 10.12377/1671-4393.25.10.08
宋善友
SONG Shanyou
摘要: 黄曲霉毒素(AF)是由黄曲霉和寄生曲霉等真菌产生的次级代谢产物,在适宜条件下易污染食品及动物饲料,对人类与动物健康构成威胁。奶牛摄入黄曲霉毒素B1(AFB1)后,其代谢产物黄曲霉毒素M1(AFM1)可分泌至乳汁中,影响乳品安全。本文系统综述了AF对奶牛生产性能、瘤胃发酵及繁殖功能的影响,并归纳了当前物理、化学及生物法在降解AF方面的研究进展,以期为防控AF对奶牛养殖的危害提供理论依据。
| [1] Kumar P,Mahato D K,Kamle M,et al.Aflatoxins:A global concern for food safety,human health and their management[J].Frontiers in Microbiology,2017,7:2170. [2] Pankaj S K,Shi H,Keener K M.A review of novel physical and chemical decontamination technologies for aflatoxin in food[J].Trends in Food Science & Technology,2018,71:73-83. [3] Bozinou E,Athanasiadis V,Samanidis I,et al.Aflatoxin inactivation in Gamma-Ray-Irradiated Almonds[J].Applied Sciences,2024,14(24):11985. [4] Hasoňová L,Samková E,Baldíková E,et al.Occurrence and seasonal variation of aflatoxin M1 in raw cow milk in the Czech Republic,Central Europe[J].Food Control,2025,170:111028. [5] 王京,梁海军,李复煌,等.2010—2021年我国饲料产品与饲料原料黄曲霉毒素B1调查分析[J].动物营养学报,2025,37(1):682-700. [6] Gandra R J,Takiya S C,Valle D A T,et al.Impact of a biological anti-mycotoxin feed additive on aflatoxin milk transfer,performance,and biomarkers of liver and renal function in Jersey cows[J].Animal Feed Science and Technology,2025,319:116181. [7] Horn B,Singh K,Frisvad J C,et al.An Illustrated Manual on Identification of Some Seed-Borne Aspergilli,Fusaria,and Penicillia and Their Mycotoxins[J].Mycologia,2023,85:139. [8] 李建. 科学解读黄曲霉菌和黄曲霉毒素[J].中国食品,2024(13):140-141. [9] Queiroz O,Han J,Staples C,et al.Effect of adding a mycotoxin-sequestering agent on milk aflatoxin M1 concentration and the performance and immune response of dairy cattle fed an aflatoxin B1-contaminated diet[J].Journal of Dairy Science,2012,95:5901-5908. [10] Ogunade I,Arriola K,Jiang Y,et al.Effects of 3 sequestering agents on milk aflatoxin M1 concentration and the performance and immune status of dairy cows fed diets artificially contaminated with aflatoxin B1[J].Journal of Dairy Science,2016,99:6263-6273. [11] Harvey R B,Kubena L F,Phillips T D,et al.Diminution of aflatoxin toxicity to growing lambs by dietary supplementation with hydrated sodium calcium aluminosilicate[J].American Journal of Veterinary Research,2019,52:152-156. [12] Edrington T S,Harvey R B,Kubena L F.Effect of aflatoxin in growing lambs fed ruminally degradable or escape protein sources[J].Journal of Animal Science and Technology,2021,72:1274-1281. [13] Sulzberger S,Melnichenko S,Cardoso F.Effects of clay after an aflatoxin challenge on aflatoxin clearance,milk production,and metabolism of Holstein cows[J].Journal of Dairy Science,2017,100:1856-1869. [14] Rodrigues R,Rodrigues R O,Ledoux D,et al.Feed additives containing sequestrant clay minerals and inactivated yeast reduce aflatoxin excretion in milk of dairy cows[J].Journal of Dairy Science,2019,102:6614-6623. [15] Fernández A,Hernández M,Verde M T,et al.Effect of aflatoxin on performance,hematology,and clinical immunology in lambs. Can[J].Journal of Veterinary Research,2000,64:53-58. [16] 索江华,张宸,连艳鲜,等.黄曲霉毒素对畜禽危害和脱毒方法的研究进展[J].中国饲料,2024(15):143-149. [17] Sinha R R P,Arora S P.Influence of different levels of aflatoxins on rumen fermentation(in vitro)[J].Journal of Nuclear Agriculture and Biology,2018,11:87-89. [18] Westlake K,Mackie R,Dutton M.In vitro metabolism of mycotoxins by bacterial,protozoal and ovine ruminal fluid preparations[J].Animal Feed Science and Technology,1999,25:169-178. [19] Jiang Y,Yang H,Lund P.Effect of aflatoxin B1 on in vitro ruminal fermentation of rations high in alfalfa hay or ryegrass hay[J].Animal Feed Science and Technology,2012,175:85-89. [20] Komsky-Elbaz A,Saktsier M,Roth Z.Aflatoxin B1 impairs sperm quality and fertilization competence[J].Toxicology,2018,393:42-50. [21] 徐博文,米俊宪,陈盼,等.霉菌毒素在反刍动物饲料中的危害及防控措施[J].饲料研究,2023,46(22):151-155. [22] 马美蓉,熊江林,傅春泉,等.奶牛饲料黄曲霉毒素B1污染及控制技术研究进展[J].家畜生态学报,2014,35(4):79-82. [23] Samarajeewa U,Sen A,Cohen M,et al.Detoxification of aflatoxins in foods and feeds by physical and chemical methods[J]. Journal of Food Protection,1990,53:489-501. [24] Sipos P,Peles F,Brassó D L,et al.Physical and chemical methods for reduction in aflatoxin content of feed and food[J]. Toxins,2021,13:204. [25] Yin Y N,Yan L Y,Jiang J H,et al.Biological control of aflatoxin contamination of crops[J]. Journal of Zhejiang University Science,2008,9:787-792. [26] Li H,Xiong Z,Gui D,et al.Effect of ozonation and UV irradiation on aflatoxin degradation of peanuts[J]. Journal of Food Processing and Preservation,2019,43(4):e13914. [27] Luo X,Wang R,Wang L,et al.Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn[J]. Food Control,2014,37:171-176. [28] Yang X,Zhang Q,Chen Z Y,et al.Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts[J]. PLoS ONE,2017,12:e0178810. [29] Mannaa M,Oh J Y,Kim K D.Microbe-mediated control of Aspergillus flavus in stored rice grains with a focus on aflatoxin inhibition and biodegradation[J]. Annals of Applied Biology,2017,171:376-392. [30] Sultan Y,Magan N.Impact of a Streptomyces (AS1) strain and its metabolites on control of Aspergillus flavus and aflatoxin B1 contamination in vitro and in stored peanuts[J]. Biocontrol Science and Technology,2011,21:1437-1455. [31] Shakeel Q,Lyu A,Zhang J,et al.Biocontrol of Aspergillus flavus on peanut kernels using Streptomyces yanglinensis 3-10[J]. Frontiers in Microbiology,2018,9:1049. [32] Abbas H K,Zablotowicz R M,Bruns H A,et al.Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates[J]. Biocontrol Science and Technology,2006,16:437-449. [33] Alaniz Zanon M S,Barros G G,Chulze S N. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina[J]. International Journal of Food Microbiology,2016,231:63-68. [34] Ren X,Zhang Q,Zhang W,et al.Control of aflatoxigenic molds by antagonistic microorganisms:Inhibitory behaviors,bioactive compounds,related mechanisms,and influencing factors[J]. Toxins,2020,12(1):24. |
| [1] | 王晶, 赵永峰, 李景斌, 杨旭, 王礞礞, 王煜东. 规模化牧场奶牛疼痛管理与抗炎药物应用现状调研报告[J]. 中国乳业, 2025, 0(9): 2-13. |
| [2] | 徐伟, 赵慧秋, 李志佳, 马修国, 耿涛, 程思源, 姜兴刚, 董飞. 口蹄疫免疫间隔对奶牛受胎率的影响分析[J]. 中国乳业, 2025, 0(9): 14-23. |
| [3] | 成冲. 烟台地区奶牛口蹄疫免疫与繁殖性能关联性及秋季防疫优化[J]. 中国乳业, 2025, 0(9): 24-29. |
| [4] | 李佳祺. 秋季布鲁氏菌病综合防控技术及其对奶牛繁殖性能的影响[J]. 中国乳业, 2025, 0(9): 30-36. |
| [5] | 张建康. 秋季防疫对奶牛繁殖性能的影响与协同管理策略[J]. 中国乳业, 2025, 0(9): 37-43. |
| [6] | 马昌国. 日粮中添加不同水平当归提取物对奶牛生产性能、血清抗氧化指标及瘤胃功能的影响[J]. 中国乳业, 2025, 0(9): 73-77. |
| [7] | 韩萌, 张文学, 杨旭, 王晶. 奶牛疼痛评估与抗炎镇痛治疗关键技术研究进展[J]. 中国乳业, 2025, 0(9): 84-90. |
| [8] | 孔令博, 张建康, 何微, 杨旭, 王晶, 聂迎利. 国内外奶牛抗炎镇痛管理研究进展与实践应用[J]. 中国乳业, 2025, 0(9): 97-107. |
| [9] | 付畅, 李强. 现代牧场繁殖数据深度解析与效率优化策略[J]. 中国乳业, 2025, 0(8): 2-7. |
| [10] | 赵新春. 热应激下奶牛激素调控策略及其应用效果分析[J]. 中国乳业, 2025, 0(8): 8-14. |
| [11] | 及美拉. 热应激对奶牛繁殖性能的影响及生殖激素调控策略[J]. 中国乳业, 2025, 0(8): 15-20. |
| [12] | 周长城. 奶牛同期发情处理技术的实践应用与关键管控策略[J]. 中国乳业, 2025, 0(8): 21-26. |
| [13] | 张建波, 黑立新, 裴廷福, 朱高照, 胡智胜. 奶牛葡萄球菌性乳腺炎及其防御机制[J]. 中国乳业, 2025, 0(8): 37-46. |
| [14] | 黄晶. 日粮中添加中草药提取物后对奶牛隐性乳腺炎的防控效果[J]. 中国乳业, 2025, 0(8): 47-53. |
| [15] | 张廷青, 乔治, 吕宏伟. 奶牛早期胚胎死亡的综合研究与精准防控策略[J]. 中国乳业, 2025, 0(7): 6-6. |
|
||