中国乳业 ›› 2025, Vol. 0 ›› Issue (10): 123-130.doi: 10.12377/1671-4393.25.10.19
• 乳品加工 • 上一篇
蒋利明1, 钱仲仓2,*
JIANG Liming1, QIAN Zhongcang2,*
摘要: 外泌体是细胞起源的膜囊泡,由各种类型的细胞释放,几乎存在于所有的生理液体中,含有多种重要的生物学分子(如蛋白质、脂质、DNA、mRNA、microRNA等)。牛奶外泌体是由乳腺上皮细胞自然分泌、天然存在于牛奶中的细胞外纳米囊泡,由于其在合成分泌中形成的特殊结构以及具有低免疫原性和高生物相容性,作为多种分子(如蛋白质、脂质、mRNA和RNA)的转运体,在生理调控、诊断治疗以及药物递送载体等方面表现巨大潜力和前景。本文介绍外泌体的形成机制、分离方法、修饰技术及其在生物调控中的应用价值,介绍在癌症治疗、生理调控中的应用,以期为外泌体功能化研发和产品开发提供新思路。
| [1] Batrakova E V,Kim M S.Using exosomes,naturally equipped nanocarriers,for drug delivery[J].Journal of Controlled Release,2015,219:396-405. [2] Minciacchi V R,Freeman M R,Di Vizio D.Extracellular vesicles in cancer:Exosomes,microvesicles and the emerging role of large oncosomes[J]. Seminars in Cell & Developmental Biology,2015,40:41-51. [3] Sahu R,Kaushik S,Clement C C,et al.Microautophagy of cytosolic proteins by late endosomes[J]. Developmental Cell,2011,20(1):131-139. [4] Record M.Intercellular communication by exosomes in placenta:A possible role in cell fusion?[J]. Placenta,2014,35(5):297-302. [5] Yellon D M,Davidson S M.Exosomes:Nanoparticles involved in cardioprotection?[J]. Circulation Research,2014,114(2):325-332. [6] Henne W M,Buchkovich N J,Emr S D.The ESCRT pathway[J]. Developmental Cell,2011,21(1):77-91. [7] Hurley J H.ESCRTs are everywhere[J].The EMBO Journal,2015,34(19):2398-2407. [8] Airola M V,Hannun Y A.Sphingolipid metabolism and neutral sphingomyelinases[J]. Handbook of Experimental Pharmacology,2013,215:57-76. [9] Castro B M,Prieto M,Silva L C.Ceramide:A simple sphingolipid with unique biophysical properties[J].Progress in Lipid Research,2014,54:53-67. [10] Perez-Hernandez D,Gutierrez-Vazquez C,Jorge I,et al.The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes[J]. Journal of Biological Chemistry,2013,288(17):11649-11661. [11] Van den Boorn J G,Dassler J,Coch C,et al. Exosomes as nucleic acid nanocarriers[J].Advanced Drug Delivery Reviews,2013,65(3):331-335. [12] Maity S,Bhat A H,Giri K,et al.BoMiProt:A database of bovine milk proteins[J]. ournal of Proteomics,2020,215:103648. [13] Hurley J H,Odorizzi G.Get on the exosome bus with ALIX[J].Nature Cell Biology,2012,14:654-655. [14] Gross J C,Chaudhary V,Bartscherer K,et al.Active Wnt proteins are secreted on exosomes[J].Nature Cell Biology,2012,14:1036-1045. [15] Lässer C,Alikhani V S,Ekström K,et al.Human saliva,plasma and breast milk exosomes contain RNA:Uptake by macrophages[J]. Journal of Translational Medicine,2011,9:9. [16] Pols M S,Klumperman J.Trafficking and function of the tetraspanin CD63[J]. Experimental Cell Research,2009,315:1584-1592. [17] Sedykh S,Kuleshova A,Nevinsky G.Milk exosomes:Perspective agents for anticancer drug delivery[J].International Journal of Molecular Sciences,2020,21:6646. [18] Théry C,Boussac M,Véron P,et al.Proteomic analysis of dendritic cell-derived exosomes:A secreted subcellular compartment distinct from apoptotic vesicles[J].Journal of Immunology,2001,166:7309-7318. [19] Zeng B,Chen T,Luo J,et al.Exploration of long non-coding RNAs and circular RNAs in porcine milk exosomes[J].Frontiers in Genetics,2020,11:652. [20] Zeng B,Chen T,Luo J Y,et al.Biological characteristics and roles of noncoding RNAs in milk-derived extracellular vesicles[J]. Advances in Nutrition,2021,12:1006-1019. [21] Benmoussa A,Laugier J,Beauparlant C J,et al.Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation[J].Journal of Dairy Science,2020,103:16-29. [22] Yun B,Kim Y,Park D J,et al.Comparative analysis of dietary exosome-derived microRNAs from human,bovine and caprine colostrum and mature milk[J].Journal of Animal Science and Technology,2021,63:593-602. [23] Cintio M,Polacchini G,Scarsella E,et al.MicroRNA milk exosomes:From cellular regulator to genomic marker[J].Animals,2020,10:1126. [24] Benmoussa A,Provost P.Milk MicroRNAs in health and disease[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18:703-722. [25] Izumi H,Tsuda M,Sato Y,et al.Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages[J].Journal of Dairy Science,2015,98:2920-2933. [26] Livshits M A,Khomyakova E,Evtushenko E G,et al.Isolation of exosomes by differential centrifugation:Theoretical analysis of a commonly used protocol[J]. Scientific Reports,2015,5. [27] Monguió-Tortajada M,Gálvez-Montón C,Bayes-Genis A,et al.Extracellular vesicle isolation methods:Rising impact of size-exclusion chromatography[J]. Cellular and Molecular Life Sciences,2019,76:2369-2382. [28] Lane R E,Korbie D,Trau M,et al.Optimizing size exclusion chromatography for extracellular vesicle enrichment and proteomic analysis from clinically relevant samples[J]. Proteomics,2019,19. [29] Yang D,Zhang W,Zhang H,et al.Progress,opportunity,and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J]. Theranostics,2020,10:3684-3707. [30] Raju D,Bathini S,Badilescu S,et al.Microfluidic platforms for the isolation and detection of exosomes:A brief review[J].Micromachines,2022,13:730. [31] Wijenayake S,Eisha S,Tawhidi Z,et al.Comparison of methods for pre-processing,exosome isolation,and RNA extraction in unpasteurized bovine and human milk[J]. PLoS One,2021,16. [32] Xu W M,Li A,Chen J J,et al.Research development on exosome separation technology[J]. The Journal of Membrane Biology,2023,256:25-34. [33] Théry C,Amigorena S,Raposo G,et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[A]. in:Current Protocols in Cell Biology[C].2006,ch.3,unit 3.22. [34] Simpson R,Mathivanan S.Extracellular microvesicles:The need for internationally recognised nomenclature and stringent purification criteria[J]. Journal of Proteomics & Bioinformatics,2012,5:1. [35] Li S,Tang Y,Dou Y.The potential of milk-derived exosomes for drug delivery[J]. Current Drug Delivery,2021,18:688-699. [36] Li P,Kaslan M,Lee S H,et al.Progress in exosome isolation techniques[J]. Theranostics,2017,7:789-804. [37] Greening D W,Xu R,Ji H,et al.A protocol for exosome isolation and characterization:Evaluation of ultracentrifugation,density-gradient separation,and immunoaffinity capture methods[J]. Methods in Molecular Biology (Clifton,N.J.),2015,1295:179-209. [38] Hata T,Murakami K,Nakatani H,et al.Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs[J]. Biochemical and Biophysical Research Communications,2010,396:528-533. [39] Bess J W Jr,Gorelick R J,Bosche W J,et al. Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations[J]. Virology,1997,230:134-144. [40] Yu W,Shevtsov M,Chen X,et al.Advances in aggregatable nanoparticles for tumor-targeted drug delivery[J]. Chinese Chemical Letters,2020,31(6):1366-1374. [41] Munagala R,Aqil F,Jeyabalan J,et al.Bovine milk-derived exosomes for drug delivery[J]. Cancer Letters,2016,371:48-61. [42] Cheng Q,Shi X,Han M,et al.Reprogramming exosomes as nanoscale controllers of cellular immunity[J]. Journal of the American Chemical Society,2018,140:16413-16417. [43] Si Y,Kim S,Zhang E,et al.Targeted exosomes for drug delivery:Biomanufacturing,surface tagging,and validation[J]. Biotechnology Journal,2020,15:e1900163. [44] Limoni S K,Moghadam M F,Moazzeni S M,et al.Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells[J]. Applied Biochemistry and Biotechnology,2019,187:352-364. [45] Liang G,Kan S,Zhu Y,et al.Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells[J]. International Journal of Nanomedicine,2018,13:585-599. [46] Salunkhe S,Dheeraj S,Basak M,et al.Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking:Strategies and significance[J]. Journal of Controlled Release,2020,326:599-614. [47] Jia G,Han Y,An Y,et al.NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo[J]. Biomaterials,2018,178:302-316. [48] Tian T,Zhang H X,He C P,et al.Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials,2018,150:137-149. [49] Xu H,Liao C,Liang S,et al.A novel peptide-equipped exosomes platform for delivery of antisense oligonucleotides[J]. ACS Applied Materials & Interfaces,2021,13:10760-10767. [50] Gao X,Ran N,Dong X,et al. Anchor peptide captures,targets,and loads exosomes of diverse origins for diagnostics and therapy[J]. Science Translational Medicine,2018,10:eaat0195. [51] Zhang Q,Xiao Q,Yin H,et al.Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma[J]. RSC Advances,2020,10:28314-28323. [52] You B,Xu W,Zhang B.Engineering exosomes:A new direction for anticancer treatment[J]. American Journal of Cancer Research,2018,8:1332-1342. [53] Kandimalla R,Aqil F,Alhakeem S S,et al.Targeted oral delivery of paclitaxel using colostrum-derived exosomes[J]. Cancers,2021,13:3700. [54] Li D,Yao S,Zhou Z,et al.Hyaluronan decoration of milk exosomes directs tumor specific delivery of doxorubicin[J]. Carbohydrate Research,2020,493:108032. [55] Li D,Gong L,Lin H,et al.Hyaluronic acid-coated bovine milk exosomes for achieving tumor-specific intracellular delivery of miRNA-204[J]. Cells,2022,11:3065. [56] Sukreet S,Silva B V R E,Adamec J,et al. Galactose and sialo-galactose modifications in glycoproteins on the surface of bovine milk exosome are essential for exosome uptake in non-bovine species (OR34-07-19)[J]. Current Developments in Nutrition,2019,3(S1):506-509. [57] Samaranayake H,Wirth T,Schenkwein D,et al.Challenges in monoclonal antibody based therapies[J]. Annals of Medicine,2009,41:322-331. [58] Kashyap D,Sharma A,Tuli H S,et al.Molecular targets of celastrol in cancer:Recent trends and advancements[J]. Critical Reviews in Oncology/Hematology,2018,128:70-81. [59] Aqil F,Kausar H,Agrawal A K,et al.Exosomal formulation enhances therapeutic response of celastrol against lung cancer[J]. Experimental and Molecular Pathology,2016,101:12-21. [60] Aqil F,Munagala R,Jeyabalan J,et al.Exosomes for the enhanced tissue bioavailability and efficacy of curcumin[J].The AAPS Journal,2017,19:1691-1702. [61] Aqil F,Jeyabalan J,Agrawal A K,et al.Exosomal delivery of berry anthocyanidins for the management of ovarian cancer[J].Food & Function,2017,8:4100-4107. [62] Agrawal A K,Aqil F,Jeyabalan J,et al.Milk-derived exosomes for oral delivery of paclitaxel[J].Nanomedicine (London,England),2017,13:1627-1636. |
| [1] | 孙华, 孙菁笛, 何金兴, 曲静然. 牛奶中天然活性成分及其影响因素研究[J]. 中国乳业, 2025, 0(9): 135-144. |
| [2] | 亓爱杰, 李莹, 李路胜. 奶山羊乳腺炎金黄色葡萄球菌分离鉴定与耐药性检测——以山东聊城为例[J]. 中国乳业, 2025, 0(7): 71-77. |
| [3] | 杜晓萌, 曹文燕, 王美娜, 翟婧, 侯晓锋, 周田军, 马建军. 高效液相色谱法检测液态奶中苯甲酸、山梨酸含量的优化研究[J]. 中国乳业, 2025, 0(7): 126-130. |
| [4] | 宋辰琦. 乳业App隐私政策中知情同意规则的适用困境及优化路径[J]. 中国乳业, 2025, 0(5): 128-133. |
| [5] | 赵凤茹, 谢凯丽, 水明, 丛慧敏, 薛文强, 李琪琪, 代晶晶, 龙洋, 王婼依. 测定牛奶和奶粉中甲基毒死蜱残留量的气相色谱串联质谱法研究[J]. 中国乳业, 2025, 0(4): 97-103. |
| [6] | 陈松林. 数据采集系统在车间环境控制中的应用[J]. 中国乳业, 2025, 0(3): 77-83. |
| [7] | 郭志坚. 安抚信息素对犊牛断奶应激的缓解作用及应用前景[J]. 中国乳业, 2025, 0(10): 45-50. |
| [8] | 刘彩娟, 张永久, 任亮, 王永信. 东北地区使用近红外分析仪检测发酵玉米青贮营养成分的应用实例[J]. 中国乳业, 2025, 0(10): 57-61. |
| [9] | 杨戬, 李慧, 仪虹伯, 王丹慧, 朱磊, 刘伯扬, 王慧, 王晓敏, 孙宏娜. 乳及乳制品智慧实验室设备数据采集研究[J]. 中国乳业, 2025, 0(10): 109-115. |
| [10] | 吕全云. 全株玉米青贮饲料在沂水县养牛业的推广应用分析[J]. 中国乳业, 2025, 0(1): 30-35. |
| [11] | 陈星星, 聂新华, 韩鹏, 田雨佳, 姚琨, 汪湛, 曹梦哲. 有机微量元素对奶牛的应用研究[J]. 中国乳业, 2024, 0(9): 40-45. |
| [12] | 葛强. 超声波监控装置及自动化控制系统的研发[J]. 中国乳业, 2024, 0(9): 90-96. |
| [13] | 钱科婷. 公共事件中行政执法的优化路径研究——以奶业事件为例[J]. 中国乳业, 2024, 0(9): 105-110. |
| [14] | 杨宇航, 张浩, 王军宁, 刘佳. 3 种不同繁殖技术在奶山羊反季节配种期的应用效果[J]. 中国乳业, 2024, 0(8): 38-43. |
| [15] | 白学兵. 热应激对奶牛泌乳性能影响的研究[J]. 中国乳业, 2024, 0(8): 98-102. |
|
||