中国乳业 ›› 2025, Vol. 0 ›› Issue (8): 67-74.doi: 10.12377/1671-4393.25.08.11

• 疾病防治 • 上一篇    下一篇

金黄色葡萄球菌引起牛乳腺炎的抗微生物应对措施

严海涛1, 纪双慧2, 胡智胜3,*   

  1. 1 山东省日照市莒县夏庄畜牧兽医站,山东日照 276500;
    2 山东省日照市莒县畜牧兽医管理服务中心,山东日照 276500;
    3 山东省畜牧总站,山东济南 250102
  • 出版日期:2025-08-25 发布日期:2025-09-10
  • 通讯作者: *胡智胜(1977-),男,山东莱州人,硕士,正高级畜牧师,统计监测室(产业经济)主任,研究方向为畜牧业生产统计与经济运行监测预警和奶牛生产技术。
  • 作者简介:严海涛(1984-),男,山东日照人,本科,高级兽医师,研究方向为兽医;纪双慧(1982-),女,山东青岛人,本科,兽医师,研究方向为动物医学。
  • 基金资助:
    2023年山东省重点研发计划(农业良种工程品种培育)项目-奶牛关键性状智能选育技术研究与应用(2023LZGC004)

The Antimicrobial Strategies against Staphylococcus aureus-induced Bovine Mastitis

YAN Haitao1, JI Shuanghui2, HU Zhisheng3,*   

  1. 1 Xiazhuang Animal Husbandry and Veterinary Hospital,Ju County,Rizhao Shandong 276500;
    2 Ju County Animal Husbandry and Veterinary Management Service Center,Rizhao Shandong 276500;
    3 Shandong Animal Husbandry Station,Jinan Shandong 250102
  • Online:2025-08-25 Published:2025-09-10

摘要: 乳腺炎是全球范围内影响奶牛的常见疾病,主要由金黄色葡萄球菌引起,通常依赖乳腺内注射和肌肉注射抗微生物药物治疗,但随着抗微生物耐药性的上升,治疗面临更大挑战且可选方案逐渐减少。生物膜的形成、致病菌在乳腺上皮细胞中的附着,使治疗更复杂。本文综述抗微生物耐药性增加、生物膜形成和细菌在细胞内存活等因素,分析常规抗生素治疗乳腺炎的挑战。同时,介绍植物化学化合物、抗微生物肽、噬菌体治疗及基于石墨烯纳米材料的替代治疗方法,这些方法有望弥补现有抗微生物药物治疗的不足,缓解抗微生物耐药性对乳腺炎治疗的威胁。本文旨在探讨乳腺炎治疗中的新兴替代方案,以期为未来的临床治疗提供有力支持。

关键词: 乳腺炎, 治疗, 金黄色葡萄球菌, 抗微生物, 替代治疗

Abstract: Mastitis is a common disease affecting dairy cows globally,primarily caused by Staphylococcus aureus,and is typically treated with antimicrobial drugs administered via intramammary and intramuscular injections.However,with the increasing rise of antimicrobial resistance,the treatment faces greater challenges and the available therapeutic options are gradually diminishing.The formation of biofilms formation and the adhesion of pathogens to mammary epithelial cells complicate treatment further.This paper discusseed factors such as the rise in antimicrobial resistance,biofilm formation,and intracellular bacterial survival,analyzing the challenges of conventional antibiotic treatment for mastitis.Additionally,it introduces alternative therapeutic approaches,including phytochemicals,antimicrobial peptides,bacteriophage therapy,and graphene-based nanomaterials,which may address the shortcomings of current antimicrobial treatments and mitigate the threat of antimicrobial resistance to mastitis treatment.This paper aimed to explore emerging alternative approaches in the treatment of mastitis,with the goal of providing robust support for future clinical therapies.

Key words: mastitis, treatment, Staphylococcus aureus, antimicrobial, alternative therapy

[1] Zhao C,Bao L,Qiu M,et al.Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice[J].Cell Reports,2022,41(8):111681.
[2] El-Sayed A,Kamel M.Bovine mastitis prevention and control in the post-antibiotic era[J].Tropical Animal Health and Production,2021,53(2):236.
[3] Cheng W N, Han S G.Bovine mastitis:Risk factors,therapeutic strategies,and alternative treatments - A review[J].Asian Australasian Journal of Animal Sciences,2020,33(11):1699-1713.
[4] Borena B M,Gurmessa F T,Gebremedhin E Z,et al.Staphylococcus aureus in cow milk and milk products in Ambo and Bako towns,Oromia,Ethiopia:Prevalence,associated risk factors,hygienic quality,and antibiogram[J].International Microbiology,2023,26(3):513-527.
[5] Cui M,Li J,Ali T,et al.Emergence of livestock-associated MRSA ST398 from bulk tank milk,China[J].Journal of Antimicrobial Chemotherapy,2020,75(12):3471-3474.
[6] Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review[J]. Veterinary Quarterly,2021,41(1):107-136.
[7] Lin X Q,Liu Z Z,Zhou C K,et al.Trained immunity in recurrent Staphylococcus aureus infection promotes bacterial persistence[J].PLoS Pathog,2024,20(1):e1011918.
[8] Cameron A,Mcallister T A.Antimicrobial usage and resistance in beef production[J].Journal of Animal Science and Biotechnology,2016,7:68.
[9] Sharun K,Dhama K,Tiwari R,et al.Advances in therapeutic and managemental approaches of bovine mastitis:A comprehensive review[J].Veterinary Quarterly,2021,41(1):107-136.
[10] Aggarwal R,Mahajan P,Pandiya S,et al.Antibiotic resistance:A global crisis,problems and solutions[J].Critical Reviews in Microbiology,2024,50(5):896-921.
[11] Sharifi A,Sobhani K,Mahmoudi P.A systematic review and meta-analysis revealed a high-level antibiotic resistance of bovine mastitis Staphylococcus aureus in Iran[J].Research in Veterinary Science,2023,161:23-30.
[12] Wang K,Cha J,Liu K,et al.The prevalence of bovine mastitis-associated Staphylococcus aureus in China and its antimicrobial resistance rate:A meta-analysis[J].Frontiers in Veterinary Science,2022,9:1006676.
[13] Kwiecinski J M,Horswill A R.Staphylococcus aureus bloodstream infections:Pathogenesis and regulatory mechanisms[J].Current Opinion in Microbiology,2020,53:51-60.
[14] Molineri A I,Camussone C,Zbrun M V,et al.Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis:Systematic review and meta-analysis[J].Preventive Veterinary Medicine,2021,188:105261.
[15] Chehabi C N,Nonnemann B,Astrup L B,et al.In vitro antimicrobial resistance of Causative Agents to clinical mastitis in Danish dairy cows[J].Foodborne Pathogens and Disease,2019,16(8):562-572.
[16] Saeed S I,Mat Yazid K A,Hashimy H A,et al.Prevalence,antimicrobial resistance,and characterization of Staphylococcus aureus isolated from subclinical bovine mastitis in East Coast Malaysia[J].Animals(Basel),2022,12(13):1680.
[17] Tran M T,Vu D M,Vu M D,et al.Antimicrobial resistance and molecular characterization of Klebsiella species causing bovine mastitis in Nghe An Province,Vietnam[J].Journal of Advanced Veterinary & Animal Research,2023,10(1):132-143.
[18] Jasińska J M,Kamińska I,Chmiel M J,et al.Biological potential of polysaccharides extracted from Nostoc colonies for film production - Physical and biological properties[J].Biotechnology Journal,2023,18(5):e2200455.
[19] Tan L F,Elaine E,Pui L P,et al.Development of chitosan edible film incorporated with Chrysanthemum morifolium essential oil[J].Acta Scientiarum Polonorum Technologia Alimentaria,2021,20(1):55-66.
[20] Zaatout N,Ayachi A,Kecha M.Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities[J].Journal of Applied Microbiology,2020,129(5):1102-1119.
[21] Feng W,Chittò M,Moriarty T F,et al.Targeted drug delivery systems for eliminating intracellular bacteria[J].Macromolecular Bioscience,2023,23(1):e2200311.
[22] Kamaruzzaman N F,Kendall S,Good L.Targeting the hard to reach:Challenges and novel strategies in the treatment of intracellular bacterial infections[J].British Journal of Pharmacology,2017,174(14):2225-2236.
[23] Leon-Sicairos N,Reyes-Cortes R,Guadrón-Llanos A M,et al.Strategies of intracellular pathogens for obtaining iron from the environment[J].Biomed Research International,2015,2015:476534.
[24] Disson O,Moura A,Lecuit M.Making sense of the biodiversity and virulence of Listeria monocytogenes[J].Trends in Microbiology,2021,29(9):811-822.
[25] Baranyai Z,Krátký M,Vosátka R,et al.In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates[J].European Journal of Medicinal Chemistry,2017,133:152-173.
[26] Sánchez M,González-Burgos E,Iglesias I,et al.Pharmacological update properties of Aloe Vera and its major active constituents[J].Molecules,2020,25(6):1324.
[27] Shin B,Park W.Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science:Current state and future perspective[J].Frontiers in Veterinary Science,2018,5:166.
[28] Dogra S,Koul B,Singh J,et al.Phytochemical analysis,antimicrobial screening and in vitro pharmacological activity of Artemisia vestita leaf extract[J].Molecules,2024,29(8):1829.
[29] Srichok J,Yingbun N,Kowawisetsut T,et al.Synergistic antibacterial and anti-inflammatory activities of Ocimum tenuiflorum ethanolic extract against major bacterial mastitis pathogens[J].Antibiotics(Basel),2022,11(4):510.
[30] Hase P,Digraskar S,Ravikanth K,et al.Management of subclinical mastitis with mastilep gel and herbal spray(AV/AMS/15)[J].International Journal of Pharmacy and Pharmacology,2013,2(4):64-67.
[31] Cordeiro L,Figueiredo P,Souza H,et al.Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus[J].International Journal of Molecular Sciences,2020,21(12):4531.
[32] Deo S,Turton K L,Kainth T,et al.Strategies for improving antimicrobial peptide production[J].Biotechnology Advances,2022,59:107968.
[33] Mhlongo J T,Waddad A Y,Albericio F,et al.Antimicrobial peptide synergies for fighting infectious diseases[J].Advanced Science,2023,10(26):e2300472.
[34] Tomasinsig L,De Conti G,Skerlavaj B,et al.Broad-spectrum activity against bacterial mastitis pathogens and activation of mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis[J].Infection and Immunity,2010,78(4):1781-1788.
[35] Shah P,Shrivastava S,Singh R J,et al.Synthetic antimicrobial peptide Polybia MP-1(Mastoparan) inhibits growth of antibiotic resistant Pseudomonas aeruginosa isolates from mastitic cow milk[J].International Journal of Peptide Research and Therapeutics,2021,27(4):2471-86.
[36] Cao L T,Wu J Q,Xie F,et al.Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows[J].Journal of Dairy Science,2007,90(8):3980-5.
[37] Dion M B,Oechslin F,Moineau S.Phage diversity,genomics and phylogeny[J].Nature Reviews Microbiology,2020,18(3):125-138.
[38] Salmond G P,Fineran P C.A century of the phage:Past,present and future[J].Nature Reviews Microbiology,2015,13(12):777-786.
[39] Piel D,Bruto M,Labreuche Y,et al.Phage-host coevolution in natural populations[J].Nat Microbiol,2022,7(7):1075-1086.
[40] Teng F,Xiong X,Zhang S,et al.Efficacy assessment of phage therapy in treating Staphylococcus aureus-induced mastitis in mice[J].Viruses,2022,14(3):620.
[41] Guo M,Gao Y,Xue Y,et al.Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection[J].Frontiers in Cellular and Infection Microbiology,2021,11:690377.
[42] Ngassam-Tchamba C,Duprez J N,Fergestad M,et al.In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis[J].Journal of Global Antimicrobial Resistance,2020,22:762-770.
[43] Geng H,Zou W,Zhang M,et al.Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice[J]. Folia Microbiologica,2020,65(2):339-351.
[44] Allahbakhsh A,Gadegaard N,Ruiz C M,et al.Graphene-based engineered living materials[J].Small Methods,2024,8(1):e2300930.
[45] Jeong W Y,Choi H E,Kim K S.Graphene-based nanomaterials as drug delivery carriers[J].Advances in Experimental Medicine and Biology,2022,1351:109-124.
[46] Vakili B,Karami-Darehnaranji M,Mirzaei E,et al.Graphene oxide as novel vaccine adjuvant[J].International Immunopharmacology,2023,125(Pt A):111062.
[47] Saeed S I,Vivian L,Zalati C W S C W,et al.Antimicrobial activities of graphene oxide against biofilm and intracellular Staphylococcus aureus isolated from bovine mastitis[J].BMC Veterinary Research,2023,19(1):10.
[48] Yang S,Baeg E,Kim K,et al.Neurodiagnostic and neurotherapeutic potential of graphene nanomaterials[J].Biosensors and Bioelectronics,2024,247:115906.
[49] Xu Y,Wang Y,He J,et al.Antibacterial properties of lactoferrin:A bibliometric analysis from 2000 to early 2022[J].Front Microbiol,2022,13:947102.
[50] Kurchenko V,Halavach T,Yantsevich A,et al.Chitosan and its derivatives regulate lactic acid synthesis during milk fermentation[J].Frontiers in Nutrition,2024,11:1441355.
[51] Ashraf A,Imran M.Causes,types,etiological agents,prevalence,diagnosis,treatment,prevention,effects on human health and future aspects of bovine mastitis[J].Animal Health Research Reviews,2020,21(1):36-49.
[1] 张建波, 黑立新, 裴廷福, 朱高照, 胡智胜. 奶牛葡萄球菌性乳腺炎及其防御机制[J]. 中国乳业, 2025, 0(8): 37-46.
[2] 黄晶. 日粮中添加中草药提取物后对奶牛隐性乳腺炎的防控效果[J]. 中国乳业, 2025, 0(8): 47-53.
[3] 亓爱杰, 李莹, 李路胜. 奶山羊乳腺炎金黄色葡萄球菌分离鉴定与耐药性检测——以山东聊城为例[J]. 中国乳业, 2025, 0(7): 71-77.
[4] 伏广达, 刘维红, 胡智胜. 奶牛乳腺炎金黄色葡萄球菌毒力因子与抗菌素耐药性关系研究进展[J]. 中国乳业, 2025, 0(7): 90-99.
[5] 孟德坤. 头孢噻呋晶体注射液治疗牛呼吸系统疾病的试验[J]. 中国乳业, 2025, 0(5): 54-58.
[6] 管鑫, 吕晓静, 崔耀文, 余璐璐, 刘爱玲. 中药复方对奶牛胎衣不下治疗效果与受胎率的影响[J]. 中国乳业, 2025, 0(5): 59-63.
[7] 赵蕾, 李坤林. 中草药散剂对奶牛隐性乳房炎的治疗效果研究[J]. 中国乳业, 2025, 0(4): 66-71.
[8] 毕金凤. 微生态制剂治疗奶牛瘤胃酸中毒的效果分析[J]. 中国乳业, 2024, 0(7): 69-72.
[9] 张同来. 奶牛乳房炎的诊断治疗和综合预防分析[J]. 中国乳业, 2024, 0(5): 85-89.
[10] 赵建发. 卵巢疾病引发奶牛不孕症的预防与治疗[J]. 中国乳业, 2024, 0(4): 42-46.
[11] 赵遵明. 奶牛前胃疾病防治技术探索与实践[J]. 中国乳业, 2024, 0(2): 29-35.
[12] 尹绪贵. 奶牛产后子宫病的中西医结合疗法[J]. 中国乳业, 2024, 0(2): 36-40.
[13] 葛保华, 戴培强, 李铁新. 中药复方制剂治疗奶牛酮病的效果分析[J]. 中国乳业, 2024, 0(2): 41-45.
[14] 刘登堂. 17 味中药及其复方对奶牛乳房炎金黄色葡萄球菌的体外抑菌试验研究[J]. 中国乳业, 2024, 0(2): 46-50.
[15] 王惠霞, 崔平, 李本科. 山东滨州地区某规模奶牛养殖场奶牛蹄病流行病学及治疗情况调查[J]. 中国乳业, 2024, 0(2): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!