中国乳业 ›› 2025, Vol. 0 ›› Issue (9): 108-117.doi: 10.12377/1671-4393.25.09.16

• 质量安全 • 上一篇    下一篇

乳制品中沙门氏菌检测技术现状及未来发展方向探究

宫靖昊1, 徐佳薇2, 刘灵帆2, 于玺1, 薛瑞奇1, 侯璇2, 张业尼2,*   

  1. 1 山东德正乳业股份有限公司,山东威海 264400;
    2 天津农学院食品科学与生物工程学院,天津 300384
  • 出版日期:2025-09-25 发布日期:2025-10-09
  • 通讯作者: *张业尼(1984-),女,山东济南人,博士,研究方向为病原微生物检测。
  • 作者简介:宫靖昊(1987-),男,山东威海人,博士,研究方向为乳制品开发;徐佳薇(2001-),女,辽宁抚顺人,本科,研究方向为食品加工与安全;刘灵帆(2004-),男,河南洛阳人,本科,研究方向为微生物检测;于 玺(1982-),男,山东威海人,本科,研究方向为功能性乳制品开发;薛瑞奇(2001-),男,山西怀仁人,本科,研究方向为乳源功能物质开发;侯 璇(2001-),女,贵州岑巩人,本科,研究方向为微生物检测。
  • 基金资助:
    天津农学院校企合作项目-高蛋白健康乳粉深加工关键技术及产业化(TNHXKJ2025016)

Exploration of the Current Situation and Future Development Directions of Salmonella Detection Technologies in Dairy Products

GONG Jinghao1, XU Jiawei2, LIU Lingfan2, Yu Xi1, XUE Ruiqi1, HOU Xuan2, ZHANG Yeni2,*   

  1. 1 Shandong Dezheng Dairy Co.,Ltd.,Weihai Shandong 264400;
    2 College of Food Science and Bioengineering,Tianjin Agricultural University,Tianjin 300384
  • Online:2025-09-25 Published:2025-10-09

摘要: 乳制品安全关乎公众健康,沙门氏菌作为其中常见的食源性致病菌,对其进行准确、快速检测至关重要。本文系统剖析现行四大检测体系:基于《GB 4789.4— 2024食品安全国家标准 食品微生物学检验 沙门氏菌检验》的检测法虽具“金标准”地位,但存在3~7 天的检测周期瓶颈;分子检测法涵盖常规PCR、衍生PCR及新型CRISPR/Cas系统等,最低检出限可达到1.00 CFU/mL,但面临活/死细菌干扰难题;免疫学检测法包括ELISA与侧流层析试纸条等,最低检出限可达到1.04×102 CFU/mL,但乳制品中存在多种物质影响;生物传感器整合纳米材料与适配体技术,实现最低5.00 CFU/mL的检出限,其微型化特性适用于现场检测。当前沙门氏菌检测技术各有优劣,单一技术存在局限,而多模态联用技术可克服短板,结合前沿科技,有望为沙门氏菌检测带来变革,提升公共卫生安全保障。

关键词: 沙门氏菌, 国标法, 分子检测法, 免疫学检测法, 传感器检测法

Abstract: The safety of dairy products is crucial to public health.As a common foodborne pathogen in dairy products,the accurate and rapid detection of Salmonella is of vital importance.This review systematically analyzed the current four major testing systems:Although the detection method based on GB 4789.4-2024 National Food Safety Standard - Microbiological testing of food - Salmonella Testing holds the status of a “gold standard”,it has a bottleneck in the testing cycle of 3 to 7 days.Molecular detection methods include conventiona PCR,derived PCR and novel CRISPR/Cas systems. The minimum detection limit can reach 1.00 CFU/mL,but struggle with the problem of interference from live/dead bacteria. Immunoassays include ELISA and lateral flow strips. The minimum detection limit can reach 1.04×102 CFU/mL, but there is matrix interference from various substances in dairy products.Biosensors integrate nanomaterials and aptamers to achieve a minimum detection limit of 5.00 CFU/mL. Its portability makes it suitable for on-site use.Current Salmonella detection technologies have its own advantages and disadvantages. A single technology shows limitations,but multimodal combined technology can overcome these shortcomings. By integrating cutting-edge technologies, it is expected to bring about a revolution in Salmonella detection and enhance public health protection.

Key words: Salmonella, national standard method, molecular detection method, immunological detection method, sensor detection method

[1] 邹婕,杨漫漫,胡晓亮,等.沙门氏菌快速检测技术研究进展[J].质量安全与检验检测,2024,34(2):73-78.
[2] 翟立公,蔡秋慧,李港回,等.沙门氏菌表型异质性的研究进展[J].食品与发酵工业,2024,50(3):321-327.
[3] 孙燕明.权威解读2023年食品安全与健康十大热点[N].中国消费者报,2024-01-10(003).
[4] Balasubramanian R,Im J,Lee J S,et al.The global burden and epidemiology of invasive non-typhoidal Salmonella infections[J].Human Vaccines & Immunotherapeutics,2019,15(6):1421-1426.
[5] 骆业巧,王进,司波.一起由沙门氏菌和金黄色葡萄球菌混合引起的食物中毒病原分析[J].食品安全质量检测学报,2020,11(19):6947-6951.
[6] Chen Z,Zhong H,Luo H,et al.Recombinase polymerase amplification combined with unmodified gold nanoparticles for Salmonella detection in milk[J].Food Analytical Methods,2019,12(1):190-197.
[7] World Health Organization.Salmonella(non-typhoidal)[R].Geneva:WHO,2018.
[8] 王芯媛,姬玉梅.乳品的营养成分及免疫调节功能[J].中国乳业,2024(4):91-95.
[9] 中华人民共和国国家卫生健康委员会,国家市场监督管理总局.GB4789.4—2024,食品安全国家标准食品微生物学检验沙门氏菌检验[S].
[10] 钟泽澄,王进,张师音.多重PCR技术研究进展[J].生物工程学报,2020,36(2):171-179.
[11] 刘继超,姜铁民,陈历俊,等.多重PCR检测原料乳中沙门氏菌、无乳链球菌和金黄色葡萄球菌的研究[J].中国食品学报,2010,10(6):173-179.
[12] 闫晗,吕国钦,张洋,等.乳品中3 种常见细菌多重PCR检测方法的建立[J].食品与发酵工业,2015,41(7):149-154.
[13] 郭瑞,赵林萍,韩小改,等.TaqMan探针双重荧光聚合酶链式反应技术检测食源性沙门氏菌和志贺氏菌[J].食品安全质量检测学报,2024,15(10):261-269.
[14] Zhang H,Wang X,Xv Z,et al.A caprylate esterase-activated fluorescent probe for sensitive and selective detection of Salmonella enteritidis[J].Analytical and Bioanalytical Chemistry,2023,415(12):2163-2172.
[15] Dou S,Liu M,Zhang F,et al.Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium[J].Mikrochimica Acta(1966),2023,190(10):403.
[16] 黎财慧,游淑珠,王小玉,等.食品中沙门氏菌活菌的Taq Man实时荧光PCR检测方法研究[J].中国口岸科学技术,2023,5(4):76-83.
[17] 赵治国,崔强,赵林立,等.微滴数字PCR技术应用进展[J].中国生物工程杂志,2017,37(6):93-96.
[18] Kong J,Fan C,Liao X,et al.Accurate detection of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium based on the combination of next-generation sequencing and droplet digital PCR[J].Food Science & Technology,2022,168:113913.
[19] 赵丽青,房保海,殷培军,等.沙门氏菌微滴式数字PCR定量检测方法的建立[J].中国口岸科学技术,2024,6(6):79-85.
[20] 冯秋实,程逸宇,吴海晶,等.PMA-ddPCR技术定量检测VBNC态沙门氏菌[J].食品科技,2024,49(7):336-342.
[21] 梁振瑞,张薇,许绍坤,等.等温扩增荧光技术快速检测沙门氏菌的研究[J].食品安全导刊,2023(12):121-123.
[22] Zhuang L,Gong J,Zhang P,et al.Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications[J].Discover Nano,2024,19(1):124.
[23] 徐文文,宋惠月,梁玉林,等.环介导等温扩增技术检测不同乳制品常见食源性致病菌[J].食品安全质量检测学报,2021,12(2):546-551.
[24] 孟兆祥,张伟,檀建新,等.一种DNA扩增的新技术:利用热稳定的Bst DNA聚合酶驱动跨越式滚环等温扩增反应[J].中国生物化学与分子生物学报,2013,29(9):892-898.
[25] 刘淑贞,张志庆,王芳,等.DNA的滚环扩增合成研究[J].物理化学学报,2017,33(10):2052-2057.
[26] 董贺楠,张蕴哲,徐慧,等.跨越式滚环扩增(SRCA)结合金纳米粒子可视化检测食品中的沙门氏菌[J].中国食品学报,2024,24(3):240-248.
[27] 丛秋实,师东方.鸡肠炎沙门氏菌可视化交叉引物等温扩增检测技术的建立及初步应用[J].中国预防兽医学报,2021,43(11):1171-1177.
[28] Hou W,Du J,Liu T,et al.A novel fluorescence cross-priming amplification based on universal molecular beacon for rapid and specific detection of Salmonella enterica in food Samples[J].Food Analytical Methods,17(10)1394-1401.
[29] Lobato I,O'Sullivan C K.Recombinase polymerase amplification:Basics,applications and recent advances[J].TrAC Trends in Analytical Chemistry,2018,98:19-35.
[30] 毛迎雪,刘蒙达,张皓博,等.重组酶介导等温扩增技术(RAA)在病原微生物检测中的应用进展[J].中国动物检疫,2024,41(1):60-66.
[31] 杨艳歌,王帅,李红娜,等.沙门氏菌ERA可视化快速检测方法的建立[J].中国食品学报,2023,23(10):261-272.
[32] 刘洁. 基于噬菌体化磁珠的RPA方法检测沙门氏菌[D].南昌:南昌大学,2024.
[33] Li Jingbin,Zhou Donggen,Xie Guoyang,et al.PMAxx combined with recombinase aided amplification technique for specific and rapid detection of Salmonella in Milk[J].Food Analytical Methods,2022,15(7):1769-1777.
[34] 王帅,杨艳歌,吴占文,等.重组酶聚合酶扩增、重组酶介导等温扩增及酶促重组等温扩增技术在食源性致病菌快速检测中的研究进展[J].食品科学,2023,44(9):297-305.
[35] 闫书宁,杨硕,杨汉银,等.CRISPR/Cas系统在寄生虫基因编辑与核酸检测中的应用进展[J].中国血吸虫病防治杂志,2024,36(3):314-320.
[36] 李丹,袁梦君,王旭,等.鼠伤寒沙门氏菌CRISPR/Cas12a检测方法的建立与应用[J].食品安全质量检测学报,2024,15(12):143-150.
[37] 高松. 基于CRISPR-Cas13a系统的核酸检测方法应用于沙门氏菌检测[D].广州:华南理工大学,2021.
[38] Hou S,Wang S,Zhao X,et al.Establishment of indirect ELISA method for Salmonella antibody detection from ducks based on PagN protein[J].BMC Veterinary Research,2022,18(1):424.
[39] Chen Y,Huang Y,Yang R,et al.Preparation of divalent camelid single-domain antibody and its application in immunoassays for Salmonella detection in food[J].Analytical and Bioanalytical Chemistry,2024,416(29):7063-7072.
[40] 程博文,张宏顺.化学发光免疫分析技术的应用进展[J].中国工业医学杂志,2022,35(3):237-240.
[41] 介明沙,蓝晟恺,万嘉芸,等.化学发光磁酶免疫分析法检测牛奶中鼠伤寒沙门氏菌[J].粮食与油脂,2023,36(11):144-148.
[42] 黄智明. 免疫荧光法在微生物快速检验中的应用分析[J].中国实用医药,2020,15(3):93-94.
[43] Zhuang Q Q,He S B,Jiang Y C,et al.Immunofluorescent-aggregation assay based on anti-Salmonella typhimurium IgG-AuNCs,for rapid detection of Salmonella typhimurium[J].Mikrochimica Acta(1966),2022,189(4):160.
[44] 闫灵芝. 侧流免疫层析技术在食品安全检测中的研究进展[J].食品工业科技,2022,43(4):1-11.
[45] Zhao D,Liu J,Du J,et al.A highly sensitive multiplex lateral flow immunoassay for simultaneous detection of Listeria monocytogenes,Salmonella Typhimurium and Escherichia coli O157:H7[J].Journal of Food Measurement and Characterization,2023,17(6):6577-6587.
[46] Wu J,Liu H,Chen W,et al.Device integration of electrochemical biosensors[J].Nature Reviews Bioengineering,2023,1(5):346-360.
[47] Deng T,Wu W,Zhou J,et al.An electrochemical biosensor for sensitive detection of live Salmonella in food via MXene amplified methylene blue signals and electrostatic immobilization of bacteriophages[J].Microchimica Acta(1966),2024,191(9):550.
[48] Wang Y,He X,Wang S,et al.Rapid detection of Salmonella typhimurium in food samples using electrochemical sensor[J].Food science & technology,2024,206:116567.
[49] Cheng M,Zhang D,Cui J,et al.Immunodetection sensing platform for Salmonella based on carbon nanotube amplification[J].Journal of Food Measurement and Characterization,2024,18(8):6541-6550.
[50] Zamzami M,Ahmad A,Alamoudi S,et al.A highly sensitive and specific Gold Electrode-Based electrochemical immunosensor for rapid On-Site detection of Salmonella enterica[J].Microchemical Journal,2024,199:110190.
[51] 黄荟娴,匡韵迪,张馨匀,等.两性离子聚合物改性抗污染棉签拭子检测牛奶中的沙门氏菌[J].中国食品学报,2023,23(11):342-351.
[52] 苑懿,黄羽文,邢巾,等.基于多孔金@铂纳米酶的比色型生物传感器用于检测牛乳中鼠伤寒沙门氏菌研究[J].中国乳品工业,2023,51(12):48-53.
[53] Hu J,Chen C,Wang L,et al.Multi-functional nanozyme-based colorimetric,fluorescence dual-mode assay for Salmonella typhimurium detection in milk[J].Microchim Acta(1966),2024,191(8):464.
[54] Xiang X,Xing G,Liu Y,et al.Immunomagnetic separation combined with RCA-CRISPR/Cas12a for the detection of Salmonella typhimurium on a figure-actuated microfluidic biosensor[J].Journal of Agricultural and Food Chemistry,2023,71(36):13518-13526.
[55] Xing G,Shang Y,Wang X,et al.A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals[J].Chinese Chemical Letters,2024,35(10):109491.
[56] He Y,Huang S,Zhang P,et al.Intra-ramanome correlation analysis unveils metabolite conversion network from an isogenic population of cells[J].mBio,2021,12(4):e0147021.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!