中国乳业 ›› 2021, Vol. 0 ›› Issue (9): 8-20.doi: 10.12377/1671-4393.21.09.03

• 尿素氮营养专题 • 上一篇    下一篇

日粮添加尿素对瘤胃上皮细胞增殖、凋亡以及吸收转运能力的影响

陆钟岩1, 张雯萱2, 阿合拉·托留拜2   

  1. 1 南京农业大学动物医学院;农业农村部动物生理生化重点试验室,江苏南京 210095;
    2 南京农业大学动物医学院,江苏南京 210095
  • 出版日期:2021-09-25 发布日期:2021-09-29
  • 通讯作者: *陆钟岩(1980-),男,江苏南京人,博士,讲师,研究方向为反刍动物营养生理和消化道微生物研究。
  • 作者简介:张雯萱(1998-),女,上海普陀人,本科生;阿合拉·托留拜(1995-),女,新疆塔城人,本科生。
  • 基金资助:
    国家自然科学基金--青年基金项目(31802155); 江苏省基础研究计划(自然科学基金)--青年基金项目(BK20180542)

Effects of Dietary Urea Supplementon Rumen Epithelial Cell proliferation, apoptosis and Epithelial Absorption and Transportation

LU Zhongyan1, ZHANG Wenxuan2, Ahela Tuoliubai2   

  1. 1Key Lab of Animal Physiology and Biochemistry, College of Veterinary Medicine,NanjingAgricultural University,Nanjing Jiangsu 210095;
    2College of Veterinary Medicine,Nanjing Agricultural University,Nanjing Jiangsu 210095
  • Online:2021-09-25 Published:2021-09-29

摘要: 本研究探讨了在日粮中添加尿素替代部分豆粕对山羊瘤胃发酵、上皮细胞增殖、凋亡和吸收转运能力的影响。将18 只波杂山羊随机分为3 组(n=6),分别饲喂3 种日粮:LC组(纯粗料)、MC组(30%精料)以及Urea组(1%DM缓释尿素替代部分豆粕+30%精料)。饲喂Urea组和MC组的山羊瘤胃中短链脂肪酸(SCFA)浓度、pH值均显著高于LC组,而该两组之间无显著差异;但Urea组在MC组的基础上进一步显著提高了瘤胃NH3和血浆尿素氮(BUN)浓度。因此日粮添加尿素对于瘤胃上皮中受瘤胃SCFA浓度、pH值调节的上皮生长、细胞周期、增殖凋亡相关基因和SCFA转运载体mRNA表达的影响与MC组相似,但对受瘤胃NH3调节的尿素转运、细胞内pH(pHi)调节相关蛋白mRNA表达则有显著的抑制效果,即显著高于LC组,但低于MC组。

关键词: 瘤胃, 日粮添加尿素, 上皮细胞增殖、凋亡, 吸收转运, 尿素循环

Abstract: This study investigated the effects of dietary urea supplement on goat rumen fermentation,epithelial cell proliferation&apoptosis,absorption and transportation of rumen epithelium. 18 Boza goats were randomly divided into 3 groups (n = 6) and fed with 3 different diets: LC group(only hay),MC group (30% concentrate)and Urea group(1% DM urea replacing soybean meal partly + 30% concentrate). The short chain fatty acids (SCFA) concentration and pH in goats rumen in Urea group and MC group were significantly higher than LC group,but there was no significant difference between these two groups. Meanwhile, Urea group had even higher rumen NH3 and plasma urea-N (BUN)concentrations than MC group. Therefore,the effects of dietary urea supplement on epithelium growth,cell cycle,mRNA expression of cell proliferation,cell apoptosis related genes and SCFA transporters which dependent on ruminal SCFA concentration and pH were similar to those in MC group. Comparing with MC group, Urea group had significant inhibitory effects on urea transport across rumen epithelium and intro-cellular pH(pHi)regulator protein mRNA expression which dependent on ruminal ammonia concentration, but those were still significantly higher than LC group.

Key words: rumen, dietary urea supplement, cell proliferation and apoptosis of rumen epithelium, absorption and transportation, urea recycling.

[1] Reynolds C K,Kristensen N B.Nitrogen recycling through the gut and the nitrogen economy of ruminants:an asynchronous symbiosis[J]. Journal of Animal Science,2008,86(14 Suppl):E293-305.
[2] Stewart G S,Smith C P.Urea nitrogen salvage mechanisms and their relevance to ruminants,non-ruminants and man[J]. Nutrition Research Reviews,2005,18(1):49-62.
[3] Houpt T R,Houpt K A.Transfer of urea nitrogen across the rumen wall[J].The American Journal of Physiology,1968,214(6):1296-303.
[4] Kiran D,Mutsvangwa T.Effects of partial ruminaldefaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations[J]. Journal of Animal Science,2010,88(3):1034-47.
[5] Fujihara T,Shem M N.Metabolism of microbial nitrogen in ruminants with special reference to nucleic acids[J]. Animal Science Journal,2011,82(2): 198-208.
[6] Reid L C.Effect of thiourea and thyroxine on oxygen uptake of tissue homogenates[J].Naunyn-SchmiedebergsArchiv fur ExperimentellePathologie und Pharmakologie,1953,219(5):467-8.
[7] Wang B,Ma T,Deng K D,et al.Effect of urea supplementation on performance and safety in diets of Dorper crossbred sheep[J]. Journal of Animal Physiology and Animal Nutrition,2016,100(5):902-10.
[8] Abdoun K,Stumpff F,Martens H.Ammonia and urea transport across the rumen epithelium:a review[J]. Animal Health Research Reviews,2006,7(1-2):43-59.
[9] Lu Z,Stumpff F,Deiner C, et al.Modulation of sheep ruminal urea transport by ammonia and pH[J]. The American Journal of Physiology Regulatory, Integrative and Comparative Physiology,2014,307(5): R558-70.
[10] Xu Y,Li Z,Moraes L E,et al. Effects of Incremental Urea Supplementation on Rumen Fermentation, Nutrient Digestion, Plasma Metabolites,Growth Performance in Fattening Lambs[J]. Animals (Basel),2019,9(9):unknown.
[11] Lu Z,Xu Z,Kong L,et al.Functional changes of the community of microbes with Ni-dependent enzyme genes accompany adaptation of the ruminal microbiome to urea-supplemented Diets[J]. Frontiers in Microbiology,2020,11: 596681.
[12] Van S P J,Robertson J B,Lewis BA. Methods for dietary fiber,neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science,1991,74(10):3583-97.
[13] Yang W,Shen Z,Martens H.An energy-rich diet enhances expression of Na(+)/H(+) exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat[J]. Journal of Animal Science,2012,90(1): 307-17.
[14] Malhi M,Gui H,Yao L,et al.Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion[J]. Journal of Dairy Science,2013,96(12): 7603-16.
[15] Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT) Method[J]. Methods,2001, 25(4): 402-8.
[16] Currier T A,Bohnert D W,Falck S J,et al.Daily and alternate day supplementation of urea or biuret to ruminants consuming low-quality forage: I. Effects on cow performance and the efficiency of nitrogen use in wethers[J]. Journal of Animal Science,2004, 82(5): 1508-17.
[17] Hume I D,Moir R J,Somers M.Synthesis of microbial protein in the rumen. I. Influence of the level of nitrogen intake[J]. Australian Journal of Agricultural Research,1970, 21(2): 283-96.
[18] Lewis D.Ammonia toxicity in the ruminant[J]. The Journal of Agricultural Science,1960,55(1):111-7.
[19] Ceconi I,Ruiz-Moreno M,DiLorenzo N,et al. Effect of slow-release urea inclusion in diets containing modified corn distillers grains on total tract digestibility and ruminal fermentation in feedlot cattle[J]. Journal of Animal Science,2015, 93(8): 4058-69.
[20] Ludden P A,Harmon D L,Huntington G B,et al.Influence of the novel urease inhibitor N-(n-butyl) thiophosphorictriamide on ruminant nitrogen metabolism: II. Ruminal nitrogen metabolism, diet digestibility,and nitrogen balance in lambs[J]. Journal of Animal Science,2000,78(1):188-98.
[21] Owens F N,Lusby K S,Mizwicki K, et al.Slow ammonia eelease from urea: rumen and metabolism studies[J]. Journal of Animal Science. 1980,50(3): 527-31.
[22] Taylor E CC,Hibbard G,Kitts S E,et al.Effects of slow-release urea on ruminaldigesta characteristics and growth performance in beef steers[J]. Journal of Animal Science,2009,87(1):200-8.
[23] Patra A K,Aschenbach J R.Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism:a review[J]. Journal of Advanced Research,2018,13: 39-50.
[24] Aschenbach J R,Penner G B,Stumpff F,et al.Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH[J]. Journal of Animal Science,2011,89(4):1092-107.
[25] Graham C,Gatherar I,Haslam I,et al.Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium[J]. The American Journal of Physiology Regulatory,Integrative and Comparative Physiology,2007,292(2): R997-1007.
[26] Kirat D,Masuoka J,Hayashi H, et al.Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen[J]. The Journal of physiology,2006,576(Pt 2):635-47.
[27] Bannink A,López S,Gerrits W,et al.Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall[J]. Animal Feed Science and Technology,2008,143:3-26.
[28] Melo L Q,Costa S F,Lopes F, et al.Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption[J]. Journal of Animal Science,2013,91(4):1775-83.
[29] Odongo N E,Alzahal O,Lindinger M I,et al.Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs[J]. Journal of Animal Science,2006,84(2):447-55.
[30] Shen Z,Seyfert H M,Lohrke B,et al.An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats[J]. The Journal of Nutrition,2004,134(1): 11-7.
[31] Vermeulen K,Berneman Z N,Van Bockstaele D R. Cell cycle and apoptosis[J]. Cell Proliferation,2003,36(3):165-75.
[32] Yan L,Zhang B,Shen Z.Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats[J]. Journal of Dairy Science,2014,97(9):5668-75.
[33] Lu J,Zhao H,Xu J,et al.Elevated cyclin D1 expression is governed by plasma IGF-1 through Ras/Raf/MEK/ERK pathway in rumen epithelium of goats supplying a high metabolizable energy diet[J]. Journal of Animal Physiology and Animal Nutrition,2013,97(6): 1170-8.
[34] Gaebel G,Martens H,Suendermann M,et al.The effect of diet,intraruminal pH and osmolarity on sodium,chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep[J]. Quarterly Journal of Experimental Physiology,1987,72(4):501-11.
[35] Uppal S K,Wolf K,Khahra S S,et al.Modulation of Na+ transport across isolated rumen epithelium by short-chain fatty acids in hay- and concentrate-fed sheep[J]. Journal of Animal Physiology and Animal Nutrition,2003,87(11-12): 380-8.
[36] Orskov E R.The effect of processing on digestion and utilization of cereals by ruminants[J]. The Proceedings of the Nutrition Society,1976,35(2):245-52.
[37] McLeod K R,Baldwin R L,Solomon M B,et al. Influence of ruminal and postruminal carbohydrate infusion on visceral organ mass and adipose tissue accretion in growing beef steers[J]. Journal of Animal Science,2007,85(9): 2256-70.
[38] Doreau M,Ferchal E,Beckers Y.Effects of level of intake and of available volatile fatty acids on the absorptive capacity of sheep rumen[J]. Small Ruminant Research,1997,25(2):99-105.
[39] Gabel G,Marek M,Martens H.Influence of food deprivation on SCFA and electrolyte transport across sheep reticulorumen[J]. Journal of Veterinary Medicine Series A,1993,40(5): 339-44.
[40] Sehested J,Andersen J B,Aaes O,et al.Feed-induced changes in the transport of butyrate,sodium and chloride ions across the isolated bovine rumen epithelium[J]. Acta Agriculturae Scandinavica,Section A — Animal Science. 2000,50(1):47-55.
[41] Kuzinski J,Roentgen M.The mRNA and protein expression of ruminal MCT1 is increased by feeding a mixed hay/concentrate diet compared with hay ad libitum diet[J]. Archiv Fur Tierzucht-Archives of Animal Breeding,2011,54(3): 280-286.
[42] Connor E E,Li R W,Baldwin R L,et al.Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes[J]. Animal,2010,4(7):993-1007.
[43] Yan L,Shen Z,Lu Z.Increases in the expression of Na(+) /H(+) exchanger 1 and 3 are associated with insulin signalling in the ruminal epithelium[J]. Journal of Animal Physiology and Animal Nutrition,2017,13:1-9.
[44] Lu Z,Yao L,Jiang Z,et al.Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium[J]. Journal of Dairy Science,2016,99(1): 733-45.
[45] Rojen B A,Lund P,Kristensen NB.Urea and short-chain fatty acids metabolism in Holstein cows fed a low-nitrogen grass-based diet[J]. Animal,2008,2(4): 500-13.
[46] Lu Z,Gui H,Yao L,et al.Short-chain fatty acids and acidic pH upregulate UT-B, GPR41,and GPR4 in rumen epithelial cells of goats[J]. The American Journal of Physiology Regulatory, Integrative and Comparative Physiology,2015,308(4):283-93.
[1] 甘水燕, 刘虎, 周建伟. 反刍动物体内尿素循环及其转运蛋白的分子调控机制研究进展[J]. 中国乳业, 2021, 0(9): 21-31.
[2] 逄世龙, 司海锋, 侯杰, 张文晔, 逄国梁. 奶牛瘤胃发酵性能与产奶量的相关性分析[J]. 中国乳业, 2021, 0(9): 74-78.
[3] 熊展博, 赵圣国, 王加启. 细菌脲酶分解尿素机制及其调控[J]. 中国乳业, 2021, 0(9): 3-7.
[4] 沈义媛, 童津津, 熊本海, 蒋林树. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, 0(8): 68-75.
[5] 张书阅, 熊本海, 刘明, 蒋林树. 酿酒酵母培养物对瘤胃内环境和免疫功能的影响及其在反刍动物上的应用[J]. 中国乳业, 2021, 0(7): 18-24.
[6] 姜富贵, 李德鹏, 成海建, 苏文政, 张召坤, 时光, 宋恩亮. 过瘤胃氨基酸对泌乳早期奶牛生产性能、乳成分和血液生化指标的影响[J]. 中国乳业, 2021, 0(7): 25-31.
[7] 文明星. 夏季奶山羊常发疾病的防治[J]. 中国乳业, 2021, 0(6): 62-67.
[8] 古丽阿托提·阿布都热依木. 奶牛常见消化系统疾病防控[J]. 中国乳业, 2021, 0(5): 51-57.
[9] 曹旺. 奶牛瘤胃臌气与瘤胃积食的鉴别诊断[J]. 中国乳业, 2021, 0(1): 37-39.
[10] 张向宏, 柳启武, 焦剑平. 粪便分离筛在提高奶业生产效率中的作用[J]. 中国乳业, 2020, 0(9): 33-37.
[11] 田得苗. 秋季奶牛常见病的防治[J]. 中国乳业, 2020, 0(11): 41-44.
[12] 高欣. 奶牛瘤胃臌气的诊治[J]. 中国乳业, 2020, 0(10): 47-48.
[13] 石维. 奶牛瘤胃酸中毒的诊治[J]. 中国乳业, 2020, 0(1): 60-61.
[14] 王国艮, 葛旭升. 过瘤胃蛋白质保护技术在反刍动物饲料中的应用[J]. 中国乳业, 2019, 0(6): 41-46.
[15] 李志春, 闫益波. 奶牛瘤胃酸中毒及其营养调控[J]. 中国乳业, 2019, 0(2): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!