中国乳业 ›› 2021, Vol. 0 ›› Issue (9): 3-7.doi: 10.12377/1671-4393.21.09.02

• 尿素氮营养专题 • 上一篇    下一篇

细菌脲酶分解尿素机制及其调控

熊展博, 赵圣国, 王加启   

  1. 中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室,北京 100193
  • 出版日期:2021-09-25 发布日期:2021-09-29
  • 通讯作者: *王加启(1967-),男,安徽宿州人,博士,研究员,博士生导师,研究方向为奶牛营养与牛奶质量安全。
  • 作者简介:熊展博(1998-),男,湖北宜昌人,博士研究生,研究方向为反刍动物营养与产品品质调控的研究;赵圣国(1984-),男,山东临沂人,博士,副研究员,研究方向为反刍动物营养与产品品质调控的研究。
  • 基金资助:
    中国农业科学院科技创新工程(ASTIP-IAS12); 动物营养学国家重点实验室(2004DA125184G2108)

Mechanism and Regulation of Urea Decomposition by Bacterial Urease

XIONG Zhanbo, ZHAO Shengguo, WANG Jiaqi   

  1. State Key Laboratory of Animal Nutrition,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences,Beijing 100193
  • Online:2021-09-25 Published:2021-09-29

摘要: 脲酶高效催化尿素分解,快速生成大量二氧化碳和氨,限制脲酶的活性能有效调控尿素的分解过程。在畜牧业上,反刍动物瘤胃脲酶会导致过度氮排放。本文将从细菌脲酶活性中心的结构特征、尿素水解机制和抑制剂调控脲酶活性机制进行综述,为有效调控脲酶活性提供理论基础和开发新抑制剂提供思路。

关键词: 细菌脲酶, 尿素分解, 脲酶抑制剂, 抑制机制, 反刍动物, 瘤胃

Abstract: Urease can efficiently catalyze urea decomposition and produce carbon dioxide and ammonia. Limiting urease activity can effectively regulate urea decomposition process.In animal husbandry,ruminant urease can lead to excessive nitrogen emission.In this paper,the structural characteristics of urease activity center in bacteria,the mechanism of urease hydrolysis and the mechanism of urease activity regulation by inhibitors were reviewed,providing theoretical basis for effective regulation of urease activity and ideas for the development of new inhibitors.

Key words: bacterial urease, urea decomposition, urease inhibitors, inhibition mechanism, ruminant, rumen

[1] Jimenez M D,Adamian L,Shi D,et al.Lysine carboxylation: unveiling a spontaneous post-translational modification. Acta Crystallogr D Biol Crystallogr,2014,70(Pt 1):48-57.
[2] Mazzei L,Musiani F,Ciurli S.The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate[J]. Journal of Biological Inorganic Chemistry,2020, 25(6):829-845.
[3] Maroney M J,Ciurli S.Nonredox nickel enzymes[J]. Chemical Reviews,2014,114(8):4206-4228.
[4] Kertz F A.Review: urea feeding to dairy cattle:a historical perspective and review[J]. Professional Animal Scientist,2010,26(3):257-272.
[5] Lobley G E,Bremner D M,Zuur G.Effects of diet quality on urea fates in sheep as assessed by refined, non-invasive [15N15N]urea kinetics.[J]. British Journal of Nutrition, 2000, 84(4):459-468.
[6] Hagenkamp K F,Haeussermann A,Hartung E,et al.Reduction of ammonia emissions from dairy manure using novel urease inhibitor formulations under laboratory conditions[J]. Biosystems Engineering,2015,130:43-51.
[7] Dawar K,Fahad S,Jahangir M M R,et al. Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil[J].Scientific reports, 2021,11(1):17413.
[8] Mazzei L,Contaldo U,Musiani F,et al.Inhibition of urease,a Ni-Enzyme:the reactivity of a key thiol with monoand di﹕ubstituted catechols elucidated by kinetic, structural and theoretical studies[J]. Angewandte Chemie International Edition,2020,60(11):6029-6035.
[9] Righetto R D,Anton L,Adaixo R,et al.High-resolution cryo-EM structure of urease from the pathogen yersinia enterocolitica[J]. Nature Communications,2020,11(1):5873.
[10] Mazzei L,Cianci M,Benini S,et al.The structure of the elusive urease-urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme[J]. Angewandte Chemie, 2019,58(22):7415-7419.
[11] Mazzei L,Cianci M,Benini S,et al.The impact of pH on catalytically critical protein conformational changes:the case of the urease,a nickel enzyme[J]. Chemistry,2019, 25(52):12145-12158.
[12] Blakeley R L,Hinds J A,Kunze H E,et al.Jack bean urease (EC 3.5.1.5). demonstration of a carbamoyl-transferreaction and inhibition by hydroxamic acids[J]. Biochemistry,1969,8(5):1991-2000.
[13] Dixon N E,Blakeley R L,Zerner B.Jack bean urease (EC 3.5.1.5). I. a simple dry ashing procedure for the microdetermination of trace metals in proteins. the nickel content of urease[J]. Canadian Journal of Biochemistry,1980,58(6):469-73.
[14] Park I S,Hausinger R P.Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter[J]. Science,1995,267(5201):1156-1158.
[15] Todd M J,Hausinger R P.Competitive inhibitors of klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site[J]. Journal of Biological Chemistry, 1989,264(27):15835-15842.
[16] Ciurli S,Marzadori C,Benini S,et al.Urease from the soil bacterium bacillus pasteurii: immobilization on Ca-polygalacturonate[J]. Soil Biology and Biochemistry,1996,28(6):811-817.
[17] Morrison J F,Walsh C T.The behavior and significance of slow-binding enzyme inhibitors[J]. Advances in Enzymology and Related Areas of Molecular Biology ,1988,61:201-301.
[18] Stemmler A J, Kampf J W, Kirk M L, et al.A model for the inhibition of urease by hydroxamates[J]. Journal of the American Chemical Society,1995,117(23):6368-6369.
[19] Gibney B R, Kessissoglou D P, Kampf J W,et al.Copper(II) 12-metallacrown-4: synthesis,structure,ligand variability,and solution dynamics in the 12-MC-4 structural motif[J]. Inorganic Chemistry,1994,33(22):4840-4849.
[20] Karplus P A,Pearson M A,Hausinger R P.70 years of crystalline urease:what have we learned?[J]. Accounts of Chemical Research,1997,30(8):330-337.
[21] Pearson M A,Michel L O,Hausinger R P,et al.Structures of Cys319 variants and qcetohydroxamate-inhibited klebsiellaaerogenes urease[J]. Biochemistry,1997,36(26):8164-8172.
[1] 陆钟岩, 张雯萱, 阿合拉·托留拜. 日粮添加尿素对瘤胃上皮细胞增殖、凋亡以及吸收转运能力的影响[J]. 中国乳业, 2021, 0(9): 8-20.
[2] 甘水燕, 刘虎, 周建伟. 反刍动物体内尿素循环及其转运蛋白的分子调控机制研究进展[J]. 中国乳业, 2021, 0(9): 21-31.
[3] 王梦芝, 杨斯涵, 刘福元, 张振斌, 赵建. 缓释尿素制备工艺及其在反刍动物生产中应用的研究进展[J]. 中国乳业, 2021, 0(9): 32-39.
[4] 逄世龙, 司海锋, 侯杰, 张文晔, 逄国梁. 奶牛瘤胃发酵性能与产奶量的相关性分析[J]. 中国乳业, 2021, 0(9): 74-78.
[5] 沈义媛, 童津津, 熊本海, 蒋林树. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, 0(8): 68-75.
[6] 张书阅, 熊本海, 刘明, 蒋林树. 酿酒酵母培养物对瘤胃内环境和免疫功能的影响及其在反刍动物上的应用[J]. 中国乳业, 2021, 0(7): 18-24.
[7] 姜富贵, 李德鹏, 成海建, 苏文政, 张召坤, 时光, 宋恩亮. 过瘤胃氨基酸对泌乳早期奶牛生产性能、乳成分和血液生化指标的影响[J]. 中国乳业, 2021, 0(7): 25-31.
[8] 文明星. 夏季奶山羊常发疾病的防治[J]. 中国乳业, 2021, 0(6): 62-67.
[9] 古丽阿托提·阿布都热依木. 奶牛常见消化系统疾病防控[J]. 中国乳业, 2021, 0(5): 51-57.
[10] 曹旺. 奶牛瘤胃臌气与瘤胃积食的鉴别诊断[J]. 中国乳业, 2021, 0(1): 37-39.
[11] 张向宏, 柳启武, 焦剑平. 粪便分离筛在提高奶业生产效率中的作用[J]. 中国乳业, 2020, 0(9): 33-37.
[12] 田得苗. 秋季奶牛常见病的防治[J]. 中国乳业, 2020, 0(11): 41-44.
[13] 高欣. 奶牛瘤胃臌气的诊治[J]. 中国乳业, 2020, 0(10): 47-48.
[14] 石维. 奶牛瘤胃酸中毒的诊治[J]. 中国乳业, 2020, 0(1): 60-61.
[15] 付瑶, 王俊, 齐志国, 郭江鹏. 高锌日粮对反刍动物的影响及在生产中的应用[J]. 中国乳业, 2019, 0(6): 38-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!