中国乳业 ›› 2021, Vol. 0 ›› Issue (9): 3-7.doi: 10.12377/1671-4393.21.09.02

• 尿素氮营养专题 • 上一篇    下一篇

细菌脲酶分解尿素机制及其调控

熊展博, 赵圣国, 王加启   

  1. 中国农业科学院北京畜牧兽医研究所动物营养学国家重点实验室,北京 100193
  • 出版日期:2021-09-25 发布日期:2021-09-29
  • 通讯作者: *王加启(1967-),男,安徽宿州人,博士,研究员,博士生导师,研究方向为奶牛营养与牛奶质量安全。
  • 作者简介:熊展博(1998-),男,湖北宜昌人,博士研究生,研究方向为反刍动物营养与产品品质调控的研究;赵圣国(1984-),男,山东临沂人,博士,副研究员,研究方向为反刍动物营养与产品品质调控的研究。
  • 基金资助:
    中国农业科学院科技创新工程(ASTIP-IAS12); 动物营养学国家重点实验室(2004DA125184G2108)

Mechanism and Regulation of Urea Decomposition by Bacterial Urease

XIONG Zhanbo, ZHAO Shengguo, WANG Jiaqi   

  1. State Key Laboratory of Animal Nutrition,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences,Beijing 100193
  • Online:2021-09-25 Published:2021-09-29

摘要: 脲酶高效催化尿素分解,快速生成大量二氧化碳和氨,限制脲酶的活性能有效调控尿素的分解过程。在畜牧业上,反刍动物瘤胃脲酶会导致过度氮排放。本文将从细菌脲酶活性中心的结构特征、尿素水解机制和抑制剂调控脲酶活性机制进行综述,为有效调控脲酶活性提供理论基础和开发新抑制剂提供思路。

关键词: 细菌脲酶, 尿素分解, 脲酶抑制剂, 抑制机制, 反刍动物, 瘤胃

Abstract: Urease can efficiently catalyze urea decomposition and produce carbon dioxide and ammonia. Limiting urease activity can effectively regulate urea decomposition process.In animal husbandry,ruminant urease can lead to excessive nitrogen emission.In this paper,the structural characteristics of urease activity center in bacteria,the mechanism of urease hydrolysis and the mechanism of urease activity regulation by inhibitors were reviewed,providing theoretical basis for effective regulation of urease activity and ideas for the development of new inhibitors.

Key words: bacterial urease, urea decomposition, urease inhibitors, inhibition mechanism, ruminant, rumen

[1] Jimenez M D,Adamian L,Shi D,et al.Lysine carboxylation: unveiling a spontaneous post-translational modification. Acta Crystallogr D Biol Crystallogr,2014,70(Pt 1):48-57.
[2] Mazzei L,Musiani F,Ciurli S.The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate[J]. Journal of Biological Inorganic Chemistry,2020, 25(6):829-845.
[3] Maroney M J,Ciurli S.Nonredox nickel enzymes[J]. Chemical Reviews,2014,114(8):4206-4228.
[4] Kertz F A.Review: urea feeding to dairy cattle:a historical perspective and review[J]. Professional Animal Scientist,2010,26(3):257-272.
[5] Lobley G E,Bremner D M,Zuur G.Effects of diet quality on urea fates in sheep as assessed by refined, non-invasive [15N15N]urea kinetics.[J]. British Journal of Nutrition, 2000, 84(4):459-468.
[6] Hagenkamp K F,Haeussermann A,Hartung E,et al.Reduction of ammonia emissions from dairy manure using novel urease inhibitor formulations under laboratory conditions[J]. Biosystems Engineering,2015,130:43-51.
[7] Dawar K,Fahad S,Jahangir M M R,et al. Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil[J].Scientific reports, 2021,11(1):17413.
[8] Mazzei L,Contaldo U,Musiani F,et al.Inhibition of urease,a Ni-Enzyme:the reactivity of a key thiol with monoand di﹕ubstituted catechols elucidated by kinetic, structural and theoretical studies[J]. Angewandte Chemie International Edition,2020,60(11):6029-6035.
[9] Righetto R D,Anton L,Adaixo R,et al.High-resolution cryo-EM structure of urease from the pathogen yersinia enterocolitica[J]. Nature Communications,2020,11(1):5873.
[10] Mazzei L,Cianci M,Benini S,et al.The structure of the elusive urease-urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme[J]. Angewandte Chemie, 2019,58(22):7415-7419.
[11] Mazzei L,Cianci M,Benini S,et al.The impact of pH on catalytically critical protein conformational changes:the case of the urease,a nickel enzyme[J]. Chemistry,2019, 25(52):12145-12158.
[12] Blakeley R L,Hinds J A,Kunze H E,et al.Jack bean urease (EC 3.5.1.5). demonstration of a carbamoyl-transferreaction and inhibition by hydroxamic acids[J]. Biochemistry,1969,8(5):1991-2000.
[13] Dixon N E,Blakeley R L,Zerner B.Jack bean urease (EC 3.5.1.5). I. a simple dry ashing procedure for the microdetermination of trace metals in proteins. the nickel content of urease[J]. Canadian Journal of Biochemistry,1980,58(6):469-73.
[14] Park I S,Hausinger R P.Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter[J]. Science,1995,267(5201):1156-1158.
[15] Todd M J,Hausinger R P.Competitive inhibitors of klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site[J]. Journal of Biological Chemistry, 1989,264(27):15835-15842.
[16] Ciurli S,Marzadori C,Benini S,et al.Urease from the soil bacterium bacillus pasteurii: immobilization on Ca-polygalacturonate[J]. Soil Biology and Biochemistry,1996,28(6):811-817.
[17] Morrison J F,Walsh C T.The behavior and significance of slow-binding enzyme inhibitors[J]. Advances in Enzymology and Related Areas of Molecular Biology ,1988,61:201-301.
[18] Stemmler A J, Kampf J W, Kirk M L, et al.A model for the inhibition of urease by hydroxamates[J]. Journal of the American Chemical Society,1995,117(23):6368-6369.
[19] Gibney B R, Kessissoglou D P, Kampf J W,et al.Copper(II) 12-metallacrown-4: synthesis,structure,ligand variability,and solution dynamics in the 12-MC-4 structural motif[J]. Inorganic Chemistry,1994,33(22):4840-4849.
[20] Karplus P A,Pearson M A,Hausinger R P.70 years of crystalline urease:what have we learned?[J]. Accounts of Chemical Research,1997,30(8):330-337.
[21] Pearson M A,Michel L O,Hausinger R P,et al.Structures of Cys319 variants and qcetohydroxamate-inhibited klebsiellaaerogenes urease[J]. Biochemistry,1997,36(26):8164-8172.
[1] 白学兵. 奶牛瘤胃微生物对围产期能量负平衡调控的研究进展[J]. 中国乳业, 2024, 0(7): 45-48.
[2] 毕金凤. 微生态制剂治疗奶牛瘤胃酸中毒的效果分析[J]. 中国乳业, 2024, 0(7): 69-72.
[3] 宋先赟. 瘤胃保护蛋氨酸在泌乳牛营养调控中的作用及其影响因素[J]. 中国乳业, 2024, 0(6): 14-17.
[4] 明宪起. 日粮中添加乳糖对奶牛泌乳性能及瘤胃发酵的影响[J]. 中国乳业, 2024, 0(6): 44-48.
[5] 王诚, 郭慧君, 张桂国, 翟桂玉, 丁博群, 董桂红, 王玲, 范秋苹, 孔德玲. 过瘤胃氨基酸对反刍动物生产性能及氮排放的影响[J]. 中国乳业, 2024, 0(6): 49-53.
[6] 林清香, 王西耀, 刘冬梅. 补饲过瘤胃蛋氨酸对围产期奶牛健康及生产性能影响的研究进展[J]. 中国乳业, 2024, 0(3): 13-17.
[7] 纪昕彤, 郭凯军. 反刍动物温室气体排放检测方法综述[J]. 中国乳业, 2024, 0(11): 3-14.
[8] 李西康. 围产期补充过瘤胃蛋氨酸对奶牛生产性能和免疫能力影响的研究进展[J]. 中国乳业, 2024, 0(1): 28-31.
[9] 王德香, 李红宇, 黄萌, 刘文, 郭春晖, 王树茂, 阿晓辉, 郭立宏, 王佳辉, 王宇. 犊牛开食料的研究[J]. 中国乳业, 2023, 0(8): 39-45.
[10] 许涛. 奶牛亚急性瘤胃酸中毒的发病机理及其营养调控措施[J]. 中国乳业, 2023, 0(8): 57-63.
[11] 黄吉峰, 刘辉, 刘旭. 安尼优-G(过瘤胃葡萄糖)对泌乳早期荷斯坦牛生产性能的影响[J]. 中国乳业, 2023, 0(11): 35-38.
[12] 杨露. 益生菌对奶牛产奶量、乳成分及瘤胃微生物区系的影响[J]. 中国乳业, 2022, 0(8): 15-18.
[13] 王志永, 李金春, 季云福, 李明, 李国明, 孟祥雨. 一例奶牛瘤胃异物堵塞的诊治与预防[J]. 中国乳业, 2022, 0(3): 37-40.
[14] 巴音巴特, 斯热格林, 袁徳军, 佐·德力格尔, 叶克拉. 奶牛瘤胃酸中毒的微生态制剂疗法[J]. 中国乳业, 2022, 0(12): 68-71.
[15] 张石建, 周迎春. 中药复方对泌乳牛生产性能和瘤胃发酵参数的影响[J]. 中国乳业, 2022, 0(11): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丹,孙艳敏,梁中喜,程星,李华. 含腐植酸缓释肥在小麦上应用效果初报[J]. 农业科技通讯, 2018, 0(5): 95 -96 .
[2] 王宁宁,黄志银,张超,翟乃家,刘蔚霞,乔健,吴广俊,王光明. 相同密度不同栽培模式对夏玉米产量及机械化收获的影响[J]. 农业科技通讯, 2018, 0(5): 57 -61 .
[3] 韩顺君. 云谷川特色种植(马铃薯)产业园建设思路[J]. 农业科技通讯, 2018, 0(5): 44 -45 .
[4] 张瑞雪. 衡水市农药使用现状及对策建议[J]. 农业科技通讯, 2018, 0(5): 42 -43 .
[5] 曹雪梅. 衡水市农技推广发展现状、存在问题及建议[J]. 农业科技通讯, 2018, 0(5): 39 -41 .
[6] 蒋业钊,兰生葵,覃瑞德. 中农大颗桕嫁接繁育及其栽培技术[J]. 农业科技通讯, 2018, 0(5): 313 -315 .
[7] 华永. 加大农业科普力度,提升农民科学素质[J]. 农业科技通讯, 2018, 0(5): 30 -31 .
[8] 郝陆真. 莱芜市山楂早期丰产栽培技术[J]. 农业科技通讯, 2018, 0(5): 296 -298 .
[9] 王在都,吴艳芳. 绿色无公害苹果综合生产技术[J]. 农业科技通讯, 2018, 0(5): 283 -284 .
[10] 戚淑芬,陈香艳,刘延刚,赵孝东,沈庆彬. 临沂市兰山区花生中后期田间管理关键技术[J]. 农业科技通讯, 2018, 0(5): 253 -254 .