中国乳业 ›› 2025, Vol. 0 ›› Issue (11): 15-23.doi: 10.12377/1671-4393.25.11.03

• 优质乳工程专题 • 上一篇    下一篇

热处理强度对乳中短链脂肪酸谱图的影响研究

陆松翠1, 肖然2,3, 杜爽2,3, 赵艳坤4, 张养东1, 郑楠1, 王加启1, 张红艳4, 欧国兵5, 牛天娇2,3,*   

  1. 1 中国农业科学院北京畜牧兽医研究所,国家市场监督管理总局重点实验室(乳品质量数智监控技术),北京 100193;
    2 蒙牛鲜乳制品(天津)有限公司,天津 301700;
    3 内蒙古蒙牛乳业(集团)股份有限公司,内蒙古呼和浩特 011500;
    4 新疆维吾尔自治区农业科学院农业质量标准与检测技术研究所, 新疆乌鲁木齐 830091;
    5 新疆西域春乳业有限责任公司,新疆昌吉 831201
  • 发布日期:2025-12-22
  • 通讯作者: *牛天娇(1978-),女,黑龙江齐齐哈尔人,博士,正高级工程师,研究方向为乳制品加工。
  • 作者简介:陆松翠(1999-),女,贵州安顺人,硕士,研究方向为奶牛营养与牛奶质量安全;肖 然(1988-),女,黑龙江哈尔滨人,博士,工程师,研究方向为乳制品加工;杜 爽(1993-),女,湖北宜昌人,硕士,中级工程师,研究方向为乳制品加工;赵艳坤(1990-),女,河南周口人,博士,研究员,研究方向为乳品质量与安全;张养东(1982-),男,山东济宁人,博士,研究员,研究方向为奶牛营养与牛奶品质;郑 楠(1980-),女,内蒙古包头人,博士,研究员,研究方向为奶产品质量安全风险评估与营养功能评价;王加启(1967-),男,安徽宿州人,博士,研究员,研究方向为奶牛营养与牛奶质量安全;张红艳(1978-),女,山东东明人,博士,正高级实验师,研究方向为乳品质量与安全;欧国兵(1976-),男,重庆人,本科,高级畜牧师,研究方向为乳制品加工与开发。
  • 基金资助:
    国家重点研发计划(2022YFD1301004); 中国农业科学院科技创新工程(ASTIP-IAS12); 国家奶牛产业技术体系(CARS-36); 新疆维吾尔自治区重点研发计划项目(2024B04005)

Effects of Heat Treatment Intensity on the Short-chain Fatty Acid Profile in Milk

LU Songcui1, XIAO Ran2,3, DU Shuang2,3, ZHAO Yankun4, ZHANG Yangdong1, ZHENG Nan1, WANG Jiaqi1, ZHANG Hongyan4, OU Guobing5, NIU Tianjiao2,3,*   

  1. 1 Institute of Animal Sciences,Chinese Academy of Agricultural Sciences; Key Laboratory of Dairy Quality and Digital Monitoring Technology,State Administration for Market Regulation,Beijing 100193;
    2 Mengniu Fresh Dairy Products (Tianjin) Co.,Ltd.,Tianjin 301700;
    3 Inner Mongolia Mengniu Dairy (Group) Co.,Ltd.,Hohhot Inner Mongolia 011500;
    4 Institute of Quality Standards & Testing Technology for Agro-Products,Xinjiang Academy of Agricultural Sciences,Urumqi Xinjiang 830091;
    5 Xinjiang Xiyuchun Dairy Co.,Ltd.,Changji Xinjiang 831201
  • Published:2025-12-22

摘要: [目的]为探究热处理强度对乳中短链脂肪酸(SCFAs)含量和组成的影响。[方法]本研究以同一批次生乳,经过间接式热处理(75 ℃/15 s、122 ℃/4 s、137 ℃/4 s)和直接式热处理(130 ℃/0.5 s)加工的乳为研究对象,采用气相色谱-质谱(GC-MS)检测乳中SCFAs和游离短链脂肪酸(FSCFAs)含量,并对其含量进行差异分析。[结果]不论是直接式热处理和间接式热处理均会导致生乳中总短链脂肪酸(TSCFAs)和总游离短链脂肪酸(TFSCFAs)不可避免的损失;在FSCFAs水平上,热处理改变了各FSCFAs的比例,尤其是C2:0、C3:0和C5:0,可能作为区分生乳与热处理乳的潜在标志物。[结论]本研究揭示了乳中SCFAs和FSCFAs在不同热处理条件下的变化规律,丰富热处理强度对乳中SCFAs的研究数据,为乳品品质评价、质量安全控制等提供了参考依据。

关键词: 热处理, 短链脂肪酸(SCFAs), 牛奶, 游离短链脂肪酸(FSCFAs)

Abstract: [Objective] This study aimed to investigate the effects of heat treatment intensity on the content and composition of short-chain fatty acids (SCFAs) in milk.[Method] Using raw milk from the same batch subjected to indirect heat treatments (75 °C/15 s,122 °C/4 s,137 °C/4 s) and direct heat treatment (130 °C/0.5 s),the contents of SCFAs and free short-chain fatty acids Free short-chain fatty acids (FSCFAs) were determined by gas chromatography-mass spectrometry (GC-MS),and differential analysis was performed.[Result] Both direct and indirect heat treatments led to unavoidable losses in total short-chain fatty acids (TSCFAs) and total free short-chain fatty acids (TFSCFAs) in raw milk. At the FSCFAs level,heat treatment alters the proportions of each FSCFAs,especially C2:0,C3:0 and C5:0,which may serve as potential markers for differentiating raw milk from heat-treated milk.[Conclusion] This study reveals the variation patterns of SCFAs and FSCFAs in milk under different heat treatment conditions,enriches the research data on the impact of heat treatment intensity on short-chain fatty acids in milk,and provides a reference for dairy quality evaluation and safety control.

Key words: heat treatment, short-chain fatty acids(SCFAs), milk, free short-chain fatty acids(FSCFAs)

[1] 王加启,郑楠,张养东. 面对新冠肺炎疫情:需要树立奶类具有双重营养功能的新认识[J].中国乳业,2021(8):123.
[2] Abbas Syed Q,Hassan A,Sharif S,et al.Structural and functional properties of milk proteins as affected by heating,high pressure,Gamma and ultraviolet irradiation:A review[J]. International Journal of Food Properties,2021,24(1):871-884.
[3] Tonolo F,Folda A,Cesaro L,et al.Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway[J]. Journal of Functional Foods,2020,64:103696.
[4] Chatterton D E,Nguyen D N,Bering S B,et al.Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns[J]. The International Journal of Biochemistry & Cell Biology,2013,45(8):1730-1747.
[5] Ilesanmi-Oyelere B L,Kruger M C. The role of milk components,pro-,pre-,and synbiotic foods in calcium absorption and bone health maintenance[J]. Frontiers in Nutrition,2020,7:578702.
[6] Coutinho N M,Silveira M R,Rocha R S,et al.Cold plasma processing of milk and dairy products[J]. Trends in Food Science & Technology,2018,74:56-68.
[7] 郭利亚,赵广英,武旭芳,等.牛奶主要热处理工艺对比分析[J]. 中国乳业,2021(4):70-4.
[8] Sakkas L,Moutafi A,Moschopoulou E,et al.Assessment of heat treatment of various types of milk[J]. Food Chemistry,2014,159:293-301.
[9] Benabdelkamel H,Masood A,Alanazi I O,et al.Proteomic profiling comparing the effects of different heat treatments on camel (Camelus dromedarius) milk whey proteins[J]. International Journal of Molecular Sciences,2017,18(4):721.
[10] Wang Y,Xiao R,Liu S,et al.The Impact of thermal treatment intensity on proteins,fatty acids,macro/micro-Nutrients,flavor,and heating markers of milk-A comprehensive review[J]. International Journal of Molecular Sciences,2024,25(16):8670
[11] Claeys W L,Verraes C,Cardoen S,et al.Consumption of raw or heated milk from different species:An evaluation of the nutritional and potential health benefits[J]. Food Control,2014,42:188-201.
[12] Bai G,Cheng L,Peng L,et al.Effects of ultra-high-temperature processes on metabolite changes in milk[J]. Food Science & Nutrition,2023,11(6):3601-3615.
[13] Raynal-Ljutovac K,Park Y W,Gaucheron F,et al.Heat stability and enzymatic modifications of goat and sheep milk[J]. Small Ruminant Research,2006,68(1):207-220.
[14] Gathercole J,Reis M G,Agnew M,et al.Molecular modification associated with the heat treatment of bovine milk[J]. International Dairy Journal,2017,73:74-83.
[15] 王秋岭,李艳君,张海斌,等. 一种长货架期的常温牛奶及其制备方法,CN112841302A [P/OL].
[16] 彭小霞,吴岳指,甘扶佩,等. 蒸汽喷射式及蒸汽浸入式杀菌对ESL牛乳品质的影响[J]. 现代食品,2024,30(21):75-79.
[17] Hu L Y,Jiang W W,Fan Z,et al.Formation of the oxidized flavor compounds at different heat treatment and changes in the oxidation stability of milk[J]. Food Science & Nutrition,2019,7(1):238-246.
[18] Clarke H J,Griffin C,Rai D K,et al.Dietary compounds influencing the sensorial,volatile and phytochemical properties of bovine milk[J]. Molecules,2020,25(1):26.
[19] 武旭芳. 乳中短链脂肪酸检测方法建立及应用[D].北京:中国农业科学院,2023.
[20] Wu X F,Wang F E,Chen M Q,et al.Quantification of free short-chain fatty acids in raw cow milk by Gas Chromatography-Mass Spectrometry[J]. Foods,2023,12(7):1367.
[21] Wu X F,Wang F E,Chen M Q,et al.A comprehensive study of the whole profiles of short-chain fatty acids in milk[J]. Journal of Dairy Science,2024,108(3):2206-2214.
[22] Pestana J M,Gennari A,Monteiro B W,et al.Effects of pasteurization and ultra-high temperature processes on proximate composition and fatty acid profile in bovine milk[J]. American Journal of Food Technology,2015,10(6):265-272.
[23] Kim H Y,Kim S H,Choi M J,et al.The effect of high pressure-low temperature treatment on physicochemical properties in milk[J]. Journal of Dairy Science,2008,91(11):4176-4182.
[24] Fan R,Shi R,Ji Z,et al. Effects of homogenization and heat treatment on fatty acids in milk from five dairy species[J]. Food Quality and Safety,2023,7:fyac069.
[25] Fox P F,Uniacke-Lowe T,McSweeney P L H,et al. Dairy Chemistry and Biochemistry[M].Springer, Cham,2015:69-144.
[26] Ahlam E,Amr A,Maria A,et al.Microbial profile of heat-treated milk sold at local markets[J]. Alexandria Journal of Veterinary Sciences,2017,55(1):133.
[27] Khan I T,Nadeem M,Imran M,et al.Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk[J]. Lipids in Health and Disease,2017,16(1):163.
[28] Ajmal M,Nadeem M,Imran M,et al.Lipid compositional changes and oxidation status of ultra-high temperature treated Milk[J]. Lipids in Health and Disease,2018,17(1):227.
[29] 魏光强,陈越,卓加珍,等.酸奶发酵和冷藏过程中品质评价及主要风味成分变化分析[J].食品与发酵工业,2019,45(18):113-119.
[30] Kilic-Akyilmaz M,Ozer B,Bulat T,et al.Effect of heat treatment on micronutrients,fatty acids and some bioactive components of milk[J]. International Dairy Journal,2022,126:105231.
[31] Yaru S,Chuantao P,Jicheng W,et al.Mesopic fermentation contributes more to the formation of important flavor compounds and increased growth of Lactobacillus casei Zhang than does high temperature during milk fermentation and storage[J]. Journal of Dairy Science,2022,105(6):4857-4867.
[32] 刘振民. 乳脂及乳脂产品科学与技术[M].北京:中国轻工业出版社,201907:330.
[33] 曹茜,王丹,袁永俊. 脂肪酶位置选择性及其应用在功能性结构甘油三酯合成中的研究进展[J].食品与发酵工业,2020,46(11):295-301.
[34] Deeth H C.Lipolysis and Hydrolytic Rancidity[M]//McSweeney P L H,McNamara J P. Encyclopedia of Dairy Sciences (Third Edition). Oxford:Academic Press,2022:827-834.
[35] Lu L,Xiuxiu Z,Yibo L,et al.Simulated in vitro infant gastrointestinal digestion of infant formulas containing different fat sources and human milk:Differences in Lipid Profiling and Free Fatty Acid Release[J]. Journal of Agricultural and Food Chemistry,2021,69(24):6799-6809.
[36] Chen Y J,Zhou X H,Han B,et al.Composition analysis of fatty acids and stereo-distribution of triglycerides in human milk from three regions of China[J]. Food Research International,2020,133:109196.
[37] Kang S,Yun J,Park H Y,et al.Analytical factors for eight short-chain fatty acid analyses in mouse feces through headspace solid-phase microextraction-triple quadrupole gas chromatography tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2023,415(25):6227-6235.
[38] Wang F,Chen M,Luo R,et al.Fatty acid profiles of milk from Holstein cows,Jersey cows,buffalos,yaks,humans,goats,camels,and donkeys based on gas chromatography-mass spectrometry[J]. Journal of Dairy Science,2022,105(2):1687-1700.
[1] 孙华, 孙菁笛, 何金兴, 曲静然. 牛奶中天然活性成分及其影响因素研究[J]. 中国乳业, 2025, 0(9): 135-144.
[2] 赵凤茹, 谢凯丽, 水明, 丛慧敏, 薛文强, 李琪琪, 代晶晶, 龙洋, 王婼依. 测定牛奶和奶粉中甲基毒死蜱残留量的气相色谱串联质谱法研究[J]. 中国乳业, 2025, 0(4): 97-103.
[3] 陈银阁, 温凤亮, 肖然, 张养东, 郑楠, 赵艳坤, 张红艳, 欧国兵, 王加启, 牛天娇. 热处理对乳品风味及美拉德反应程度的影响[J]. 中国乳业, 2025, 0(11): 42-50.
[4] 蒋利明, 钱仲仓. 牛奶外泌体的分离、修饰及其在疾病治疗中的应用进展[J]. 中国乳业, 2025, 0(10): 123-130.
[5] 葛强. 超声波监控装置及自动化控制系统的研发[J]. 中国乳业, 2024, 0(9): 90-96.
[6] 钱科婷. 公共事件中行政执法的优化路径研究——以奶业事件为例[J]. 中国乳业, 2024, 0(9): 105-110.
[7] 白学兵. 热应激对奶牛泌乳性能影响的研究[J]. 中国乳业, 2024, 0(8): 98-102.
[8] 周欢, 宋艳梅, 范光彩, 夏忠悦, 马静, 骆敏, 谭莲英, 钱成林. 福林酚法高通量测定牛奶中蛋白酶活力的优化[J]. 中国乳业, 2024, 0(7): 92-97.
[9] 曾云凤, 周振新, 刘昨, 陈芳, 李文静, 陈宝宇, 李伟胤, 卜泽明. 盖勃法测定牛奶中脂肪含量的优化[J]. 中国乳业, 2024, 0(7): 98-101.
[10] 文冬雪, 陈小成, 何明锦, 蓝嘉辉, 韦锦超, 农达, 孔志伟. 荷斯坦牛奶和水牛奶不同配比对奶酪品质的影响[J]. 中国乳业, 2024, 0(6): 115-119.
[11] 王英南, 卢智华, 李艳红, 伊德润, 毕成名, 何青春, 李慧, 王斌, 白晓玲. 火焰原子吸收光谱法检测牛奶中钙方法的研究[J]. 中国乳业, 2024, 0(4): 61-66.
[12] 弓耀忠, 孙丽萍, 曾品国, 郭忠强, 尚强胜, 王媛慧, 杜利君, 巩丽青. 灭菌乳酸度指标扩大必要性的研究[J]. 中国乳业, 2024, 0(4): 72-76.
[13] 窦佩佩, 张慧娟, 卢涵, 袁庆彬, 王世杰, 罗永康. A2β-酪蛋白牛奶和普通牛奶的体外消化特性和抗氧化能力评价[J]. 中国乳业, 2024, 0(4): 85-90.
[14] 杨凯, 张天博, 陈鹏, 李朝旭. 改善特医乳基无乳糖婴儿配方粉配方热稳定性的研究[J]. 中国乳业, 2024, 0(2): 76-80.
[15] 纪坤发, 杨爱君, 何瑛, 杨美丰, 利志锋, 陈锦璇. 高效液相色谱法测定牛奶中黄曲霉毒素M1含量的方法验证研究[J]. 中国乳业, 2024, 0(11): 120-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!